Incorporating inorganic nanoparticles (NPs) into polymer matrices provides a promising solution for suppressing space charge effects that can lead to premature failure of electrical insulation used in high voltage direct current engineering. However, realizing homogeneous NP dispersion is a great challenge especially in high-molecular-weight polymers. Here, we address this issue in crosslinked polyethylene by grafting matrix-compatible polymer brushes onto spherical colloidal SiO2 NPs (10–15 nm diameter) to obtain a uniform NP dispersion, thus achieving enhanced space charge suppression, improved DC breakdown strength, and restricted internal field distortion (≤10.6%) over a wide range of external DC fields from −30 kV/mm to −100 kV/mm at room temperature. The NP dispersion state is the key to ensuring an optimized distribution of deep trapping sites. A well-dispersed system provides sufficient charge trapping sites and shows better performance compared to ones with large aggregates. This surface ligand strategy is attractive for future nano-modification of many engineering insulating polymers.

1.
M.
Fu
,
L. A.
Dissado
,
G.
Chen
, and
J. C.
Fothergill
,
IEEE Trans. Dielectr. Electr. Insul.
15
(
3
),
851
(
2008
).
2.
Z. L.
An
,
Q.
Yang
,
C.
Xie
,
Y.
Jiang
,
F. H.
Zheng
, and
Y. W.
Zhang
,
J. Appl. Phys.
105
,
064102
(
2009
).
3.
T. J.
Lewis
,
IEEE Trans. Dielectr. Electr. Insul.
1
(
5
),
812
(
1994
).
4.
L.
Milliere
,
K.
Makasheva
,
C.
Laurent
,
B.
Despax
, and
G.
Teyssedre
,
Appl. Phys. Lett.
105
,
122908
(
2014
).
5.
F. Q.
Tian
,
Q. Q.
Lei
,
X.
Wang
, and
Y.
Wang
,
Appl. Phys. Lett.
99
,
142903
(
2011
).
6.
B.
Han
,
X.
Wang
,
Z.
Sun
,
J. M.
Yang
, and
Q. Q.
Lei
,
Appl. Phys. Lett.
102
,
012902
(
2013
).
7.
X.
Huang
,
P.
Jiang
, and
Y.
Yin
,
Appl. Phys. Lett.
95
,
242905
(
2009
).
8.
L.
Zhang
,
Y. X.
Zhou
,
M.
Huang
,
Y. C.
Sha
,
J. H.
Tian
, and
Q.
Ye
,
IEEE Trans. Dielectr. Electr. Insul.
21
(
2
),
424
(
2014
).
9.
L.
Zhang
,
Y. X.
Zhou
,
X. Y.
Cui
,
Y. C.
Sha
,
T. H.
Le
,
Q.
Ye
, and
J. H.
Tian
,
IEEE Trans. Dielectr. Electr. Insul.
21
(
4
),
1554
(
2014
).
10.
Y.
Li
,
T. M.
Krentz
,
L.
Wang
,
B. C.
Benicewicz
, and
L. S.
Schadler
,
ACS Appl. Mater. Interfaces
6
(
9
),
6005
(
2014
).
11.
S.
Virtanen
,
T. M.
Krentz
,
J. K.
Nelson
,
L. S.
Schadler
,
M.
Bell
,
B.
Benicewicz
,
H.
Hillborg
, and
S.
Zhao
,
IEEE Trans. Dielectr. Electr. Insul.
21
(
2
),
563
(
2014
).
12.
Y. H.
Huang
,
K.
Wu
,
M.
Bell
,
A.
Oakes
,
T.
Ratcliff
,
N. A.
Lanzillo
,
C.
Breneman
,
B. C.
Benicewicz
, and
L. S.
Schadler
,
J. Appl. Phys.
120
,
055102
(
2016
).
13.
C.
Li
,
J.
Han
,
C. Y.
Ryu
, and
B.
Benicewicz
,
Macromolecules
39
(
9
),
3175
(
2006
).
14.
T.
Krentz
,
M. M.
Khani
,
M.
Bell
,
B. C.
Benicewicz
,
J. K.
Nelson
,
S.
Zhao
,
H.
Hillborg
, and
L. S.
Schadler
,
J. Appl. Polym. Sci.
134
(
1
),
44347
(
2017
).
15.
M.
Kobayashi
,
R.
Matsuno
,
H.
Otsuka
, and
A.
Takahara
,
Sci. Technol. Adv. Mater.
7
(
7
),
617
(
2006
).
16.
Y. H.
Huang
and
L. S.
Schadler
,
J. Appl. Phys.
120
,
055101
(
2016
).
17.
L. A.
Dissado
, in
Proceedings of the 10th IEEE International Conference on Solid Dielectrics
(
IEEE
,
2010
), pp.
1
6
.
18.
G.
Mazzanti
,
G. C.
Montanari
,
F.
Palmieri
, and
J.
Alison
,
J. Appl. Phys.
94
,
5997
(
2003
).
19.
F.
Baudoin
,
R. S.
Le
,
G.
Teyssedre
, and
C.
Laurent
,
J. Phys. D
41
,
025306
(
2008
).
20.
M.
Meunier
,
N.
Quirke
, and
A.
Aslanides
,
J. Chem. Phys.
115
(
6
),
2876
(
2001
).
21.
G.
Teyssedre
and
C.
Laurent
,
IEEE Trans. Dielectr. Electr. Insul.
12
(
5
),
857
(
2005
).
22.
J. P.
Jones
,
J. P.
Llewellyn
, and
T. J.
Lewis
,
IEEE Trans. Dielectr. Electr. Insul.
12
(
5
),
951
(
2005
).
23.
M.
Ieda
,
IEEE Trans. Electr. Insul.
El-19
(
3
),
162
(
1984
).
24.
F. Q.
Tian
,
W. B.
Bu
,
L. S.
Shi
,
C.
Yang
,
Y.
Wang
, and
Q. Q.
Lei
,
J. Electrostat.
69
(
1
),
7
(
2011
).
You do not currently have access to this content.