Colloidal quantum dot (QD) solar cells have seen remarkable progress in recent past to reach the certified efficiency of 10.6%. Anatase titanium oxide (TiO2) is a widely studied n-type widow layer for the collection of photogenerated electrons in QD solar cells. Requirement of high temperature (∼500 °C) processing steps proved to be disadvantageous for its applications in flexible solar cells and roll to roll processing, and it also has adverse commercial implications. Here, we report that solar light exposure to low temperature processed (80 °C–150 °C) TiO2 and niobium doped TiO2 films leads to unprecedented enhancement in their electron densities and electron mobilities, which enables them to be used as efficient n-type layers in quantum dot solar cells. Such photoinduced high conducting states in these films show gradual decay over hours after the light bias is taken off and can be retrieved under solar illumination. On the contrary, TiO2 films processed at 500 °C show marginal photo induced enhancements in their characteristics. In bilayer configuration with PbS QDs, photovoltaic devices based on low temperature processed TiO2 films show improved performance over high temperature processed TiO2 films. The stability of photovoltaic devices also improved in low temperature processed TiO2 films under ambient working conditions.

1.
S.
Mathew
,
A.
Yella
,
P.
Gao
,
R.
Humphry-Baker
,
B. F. E.
Curchod
,
N.
Ashari-Astani
,
I.
Tavernelli
,
U.
Rothlisberger
,
M. K.
Nazeeruddin
, and
M.
Gratzel
,
Nat. Chem.
6
(
3
),
242
247
(
2014
).
2.
M.
Durr
,
A.
Bamedi
,
A.
Yasuda
, and
G.
Nelles
,
Appl. Phys. Lett.
84
(
17
),
3397
3399
(
2004
).
3.
C.
Goh
,
S. R.
Scully
, and
M. D.
McGehee
,
J. Appl. Phys.
101
(
11
),
114503
(
2007
).
4.
J. A.
Chang
,
J. H.
Rhee
,
S. H.
Im
,
Y. H.
Lee
,
H. J.
Kim
,
S. I.
Seok
,
M. K.
Nazeeruddin
, and
M.
Gratzel
,
Nano Lett.
10
(
7
),
2609
2612
(
2010
).
5.
M. M.
Lee
,
J.
Teuscher
,
T.
Miyasaka
,
T. N.
Murakami
, and
H. J.
Snaith
,
Science
338
(
6107
),
643
647
(
2012
).
6.
A.
Guerrero
,
E. J.
Juarez-Perez
,
J.
Bisquert
,
I.
Mora-Sero
, and
G.
Garcia-Belmonte
,
Appl. Phys. Lett.
105
(
13
),
133902
(
2014
).
7.
H.
Liu
,
J.
Tang
,
I. J.
Kramer
,
R.
Debnath
,
G. I.
Koleilat
,
X. H.
Wang
,
A.
Fisher
,
R.
Li
,
L.
Brzozowski
,
L.
Levina
, and
E. H.
Sargent
,
Adv. Mater.
23
(
33
),
3832
3837
(
2011
).
8.
L.
Etgar
,
T.
Moehl
,
S.
Gabriel
,
S. G.
Hickey
,
A.
Eychmuller
, and
M.
Gratzel
,
ACS Nano
6
(
4
),
3092
3099
(
2012
).
9.
A. G.
Pattantyus-Abraham
,
I. J.
Kramer
,
A. R.
Barkhouse
,
X. H.
Wang
,
G.
Konstantatos
,
R.
Debnath
,
L.
Levina
,
I.
Raabe
,
M. K.
Nazeeruddin
,
M.
Gratzel
, and
E. H.
Sargent
,
ACS Nano
4
(
6
),
3374
3380
(
2010
).
10.
J. P.
Clifford
,
K. W.
Johnston
,
L.
Levina
, and
E. H.
Sargent
,
Appl. Phys. Lett.
91
(
25
),
253117
(
2007
).
11.
K. W.
Johnston
,
A. G.
Pattantyus-Abraham
,
J. P.
Clifford
,
S. H.
Myrskog
,
S.
Hoogland
,
H.
Shukla
,
J. D.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Appl. Phys. Lett.
92
(
12
),
122111
(
2008
).
12.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T. Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
,
Science
317
(
5835
),
222
225
(
2007
).
13.
P.
Docampo
,
J. M.
Ball
,
M.
Darwich
,
G. E.
Eperon
, and
H. J.
Snaith
,
Nat. Commun.
4
,
2761
(
2013
).
14.
M. Z.
Atashbar
,
H. T.
Sun
,
B.
Gong
,
W.
Wlodarski
, and
R.
Lamb
,
Thin Solid Films
326
(
1–2
),
238
244
(
1998
).
15.
L.
Li
,
P.
Zhang
,
W. M.
Wang
,
H. T.
Lin
,
A. B.
Zerdoum
,
S. J.
Geiger
,
Y. C.
Liu
,
N.
Xiao
,
Y.
Zou
,
O.
Ogbuu
,
Q. Y.
Du
,
X. Q.
Jia
,
J. J.
Li
, and
J. J.
Hu
,
Sci. Rep.
5
,
13832
(
2015
).
16.
N.
Ghobadi
,
Int. Nano Lett.
3
(
1
),
2
(
2013
).
17.
A. V.
Emeline
,
Y.
Furubayashi
,
X. T.
Zhang
,
M.
Jin
,
T.
Murakami
, and
A.
Fujishima
,
J. Phys. Chem. B
109
(
51
),
24441
24444
(
2005
).
18.
D.
Mandal
and
T. W.
Hamann
,
ACS Appl. Mater. Interfaces
8
(
1
),
419
424
(
2016
).
19.
T.
Leijtens
,
G. E.
Eperon
,
S.
Pathak
,
A.
Abate
,
M. M.
Lee
, and
H. J.
Snaith
,
Nat. Commun.
4
,
2885
(
2013
).
20.
C. Y.
Fan
,
C.
Chen
,
J.
Wang
,
X. X.
Fu
,
Z. M.
Ren
,
G. D.
Qian
, and
Z. Y.
Wang
,
J. Mater. Chem. A
2
(
38
),
16242
16249
(
2014
).
21.
A. K.
Rath
,
M.
Bernechea
,
L.
Martinez
, and
G.
Konstantatos
,
Adv. Mater.
23
(
32
),
3712
3717
(
2011
).
22.
S. M.
Willis
,
C.
Cheng
,
H. E.
Assender
, and
A. A. R.
Watt
,
Nano Lett.
12
(
3
),
1522
1526
(
2012
).
23.
C. M.
Wolfe
,
N.
Holonyak
, and
G. E.
Stillman
,
Physical Properties of Semiconductors
(
Prentice Hall
,
1989
).
24.
A. H.
Ip
,
S. M.
Thon
,
S.
Hoogland
,
O.
Voznyy
,
D.
Zhitomirsky
,
R.
Debnath
,
L.
Levina
,
L. R.
Rollny
,
G. H.
Carey
,
A.
Fischer
,
K. W.
Kemp
,
I. J.
Kramer
,
Z. J.
Ning
,
A. J.
Labelle
,
K. W.
Chou
,
A.
Amassian
, and
E. H.
Sargent
,
Nat. Nanotechnol.
7
(
9
),
577
582
(
2012
).
25.
M. X.
Liu
,
F. P. G.
de Arquer
,
Y. Y.
Li
,
X. Z.
Lan
,
G. H.
Kim
,
O.
Voznyy
,
L. K.
Jagadamma
,
A. S.
Abbas
,
S.
Hoogland
,
Z. H.
Lu
,
J. Y.
Kim
,
A.
Amassian
, and
E. H.
Sargent
,
Adv. Mater.
28
(
21
),
4142
4148
(
2016
).
26.
A.
Niemegeers
and
M.
Burgelman
,
J. Appl. Phys.
81
(
6
),
2881
2886
(
1997
).
27.
K. C.
Kao
and
W.
Hwang
,
Electrical Transport in Solids: With Particular Reference to Organic Semiconductors
(
Pergamon Press
,
1981
).
28.
F. C.
Chiu
,
Adv. Mater. Sci. Eng.
578168
(
2014
).
29.
O.
Carp
,
C. L.
Huisman
, and
A.
Reller
,
Prog. Solid State Chem.
32
(
1–2
),
33
177
(
2004
).
30.
D. A. H.
Hanaor
and
C. C.
Sorrell
,
J. Mater. Sci.
46
(
4
),
855
874
(
2011
).

Supplementary Material

You do not currently have access to this content.