A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.

1.
T. Q.
Trung
and
N. E.
Lee
,
Adv. Mater.
28
,
4338
(
2016
).
2.
S.
Nabavi
and
L.
Zhang
,
Sensors
16
,
1101
(
2016
).
3.
F. R.
Fan
,
W.
Tang
, and
Z. L.
Wang
,
Adv. Mater.
28
,
4283
(
2016
).
4.
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
).
5.
G. H.
Haertling
,
J. Am. Ceram. Soc.
82
,
797
(
1999
).
6.
S. K.
Ghosh
and
D.
Mandal
,
Appl. Phys. Lett.
109
,
103701
(
2016
).
7.
S. K.
Ghosh
and
D.
Mandal
,
Nano Energy
28
,
356
(
2016
).
9.
N.
Yan
and
X.
Chen
,
Nature
524
,
155
(
2015
).
10.
C. E.
Ayres
,
B. S.
Jha
,
H.
Meredith
,
J. R.
Bowman
,
G. L.
Bowlin
,
S. C.
Henderson
, and
D. G.
Simpson
,
J. Biomater. Sci. Polym. Ed.
19
,
603
(
2008
).
11.
J.
Jin
,
D.
Lee
,
H. G.
Im
,
Y. C.
Han
,
E. G.
Jeong
,
M.
Rolandi
,
K. C.
Choi
, and
B. S.
Bae
,
Adv Mater.
28
,
5169
(
2016
).
12.
Y.
Lu
,
Q.
Sun
,
X.
She
,
Y.
Xia
,
Y.
Liu
,
J.
Li
, and
D.
Yang
,
Carbohydr. Polym.
98
,
1497
(
2013
).
13.
E.
Fukada
and
S.
Sasaki
,
J. Polym. Sci. Polym. Phys. Ed.
13
,
1845
(
1975
).
14.
T.
Putzeys
and
M.
Wübbenhorst
,
IEEE Trans. Dielectr. Electr. Insul.
22
,
1394
(
2015
).
15.
T.
Furukawa
and
N.
Seo
,
Jpn. J. Appl. Phys.
29
,
675
(
1990
).
16.
S. V.
Kalinina
,
B. J.
Rodrigueza
,
J.
Shina
,
S.
Jesse
,
V.
Grichko
,
T.
Thundat
,
A. P.
Baddorf
, and
A.
Gruverman
,
Ultramicroscopy
106
,
334
(
2006
).
17.
T. K.
Sinha
,
S. K.
Ghosh
,
R.
Maiti
,
S.
Jana
,
B.
Adhikari
,
D.
Mandal
, and
S. K.
Ray
,
ACS Appl. Mater. Interfaces
8
,
14986
(
2016
).
18.
A.
Tamang
,
S. K.
Ghosh
,
S.
Garain
,
M. M.
Alam
,
J.
Haeberle
,
K.
Henkel
,
D.
Schmeisser
, and
D.
Mandal
,
ACS Appl. Mater. Interfaces
7
,
16143
(
2015
).
19.
S. K.
Ghosh
,
T. K.
Sinha
,
B.
Mahanty
, and
D.
Mandal
,
Energy Technol.
3
,
1190
(
2015
).
20.
T.
Ikeda
,
Fundamentals of Piezoelectricity
(
Oxford University Press
,
Oxford, UK
,
1996
).
21.
J. C.
Maxwell
,
Philosophical Magazine and Journal of Science, London, Edinburg and Dubline
, Fourth Series (
Taylor & Francis
,
1861
), p.
161
.
22.
Z. L.
Wang
, “
On Maxwell's displacement current for energy and sensors: The origin of nanogenerators
,”
Mater. Today
(published online).
23.
J. D.
Baniecki
,
R. B.
Laibowitz
,
T. M.
Shaw
,
K. L.
Saenger
,
P. R.
Duncombe
,
C.
Cabral
,
D. E.
Kotecki
,
H.
Shen
,
J.
Lian
, and
Q. Y.
Ma
,
J. Eur. Ceram. Soc.
19
,
1457
(
1999
).
24.
S. K.
Ghosh
,
T. K.
Sinha
,
B.
Mahanty
,
S.
Jana
, and
D.
Mandal
,
J. Appl. Phys.
120
,
174501
(
2016
).
25.
S. K.
Ghosh
,
A.
Biswas
,
S.
Sen
,
C.
Das
,
K.
Henkel
,
D.
Schmeisser
, and
D.
Mandal
,
Nano Energy
30
,
621
(
2016
).
26.
S.
Niu
,
X.
Wang
,
F.
Yi
,
Y. S.
Zhou
, and
Z. L.
Wang
,
Nat. Commun.
6
,
8975
8983
(
2015
).
27.
P.
Piirilä
and
A. R. A.
Sovijärvi
,
Eur. Respir. J.
8
,
1949
(
1995
).
28.
A. P.
Avolio
,
M.
Butlin
, and
A.
Walsh
,
Physiol. Meas.
31
,
R1
(
2010
).
29.
B.
Thakker
,
A. L.
Vyas
, and
D. M.
Tripathi
,
Int. J. Biomed. Eng. Technol.
15
,
273
(
2014
).

Supplementary Material

You do not currently have access to this content.