We electrically detect charge current induced spin polarization on the surface of a molecular beam epitaxy grown Bi2Te3 thin film in a two-terminal device with a ferromagnetic MgO/Fe contact and a nonmagnetic Ti/Au contact. The two-point resistance, measured in an applied magnetic field, shows a hysteresis tracking the magnetization of Fe. A theoretical estimate is obtained for the change in resistance on reversing the magnetization direction of Fe from coupled spin-charge transport equations based on the quantum kinetic theory. The order of magnitude and the sign of the hysteresis are consistent with the spin-polarized surface state of Bi2Te3.
References
Assuming two 2D surface states and at least two degenerate quasi-2D (because of our thin film) bulk states being populated, i.e., at least 4 states being filled, an upper limit of kF is estimated from the carrier concentration nc using .