This paper presents the results of an analytical model for the capillary rise in nano-channels considering the effect of inherent surface roughness. The model was derived using the classical Lucas-Washburn model and the momentum conservation equation, while considering the inherent surface roughness of an equivalent porous medium layer (PML). The calculated frictional resistance due to the PML reflects the friction of fluid flowing through nano-channels. The capillary imbibition in the nano-channels is in the range of low-Reynolds-number flow, and because of its low flow-rate, the inertia force can be ignored in this study. This analytical model was validated by comparing it with nano-capillary rise experiments and other simulated values such as the classical Lucas-Washburn (LW) model and the classical LW model with a 40% fluid viscosity increment. The analytical model produces the closest results to those obtained in the experiments, and it can explain the lower-than-expected (using the LW equation) height of capillary rise obtained in the experiments.

1.
C. N.
Zou
,
R. K.
Zhu
,
B.
Bai
,
Z.
Yang
,
S. T.
Wu
,
L.
Su
,
D. Z.
Dong
, and
X. J.
Li
,
Acta Petrol. Sin.
27
,
1857
(
2011
).
2.
C. N.
Zou
,
S. Z.
Tao
,
X. J.
Yuan
,
R. K.
Zhu
,
D. Z.
Dong
,
W.
Li
,
L.
Wang
,
X. H.
Gao
,
Y. J.
Gong
,
J. H.
Jia
,
L. H.
Hou
,
Y. G.
Zhang
,
J. Z.
Li
,
C. C.
Xu
, and
H.
Yang
,
J. Pet. Explor. Dev.
36
,
669
(
2009
).
4.
N.
Fries
and
M.
Dreyer
,
J. Colloid Interface Sci.
320
,
259
(
2008
).
5.
E. W.
Washburn
,
Phys. Rev.
17
,
273
(
1921
).
6.
D.
Quere
,
J. Europhys. Lett.
39
,
533
(
1997
).
7.
S.
Das
and
S. K.
Mitra
,
J. Phys. Rev. E
87
,
063005
(
2013
).
8.
S.
Das
,
P. R.
Waghmare
, and
S. K.
Mitra
,
Phys. Rev. E
86
,
067301
(
2012
).
9.
C. H.
Bosanquet
,
J. Philos. Mag.
45
,
525
(
1923
).
10.
B. V.
Zhmud
,
F.
Tiberg
, and
K.
Hallstensson
,
J. Colloid Interface Sci.
228
,
263
(
2000
).
11.
S.
Gruener
,
T.
Hofmann
,
D.
Wallacher
,
A. V.
kityk
, and
P.
Huber
,
Phys. Rev. E
79
,
067301
(
2009
).
12.
S.
Gruener
and
P.
Huber
,
Phys. Rev. Lett.
103
,
174501
(
2009
).
13.
A.
Kusmin
,
S.
Gruener
,
A.
Henschel
,
O.
Holderer
,
J.
Allgaier
,
D.
Richter
, and
P.
Huber
,
J. Phys. Chem. Lett.
1
,
3116
(
2010
).
14.
O.
Vincent
,
A.
Szenicer
, and
A. D.
Stroock
,
Soft Matter
12
,
6656
(
2016
).
15.
S.
Gruener
,
H. E.
Hermes
,
B.
Schillinger
,
S. U.
Egelhaaf
, and
P.
Huber
,
Colloids Surf., A
496
,
13
(
2016
).
16.
J.
Bico
,
U.
Thiele
, and
D.
Quéré
,
J. Colloids Surf., A
206
,
41
(
2002
).
17.
C.
Ishino
,
M.
Reyssat
,
E.
Reyssat
,
K.
Okumra
, and
D.
Quere
,
Europhys. Lett.
79
,
56005
(
2007
).
18.
S. C.
Jones
and
O.
Roszelle
,
J. Petrol. Technol.
30
,
807
(
1976
).
19.
A.
Han
,
G.
Mondin
,
N. G.
Hegelbach
,
N. F.
de Rooij
, and
U.
Staufer
,
J. Colloid Interface Sci.
293
,
151
(
2006
).
20.
J.
Haneveld
,
N. R.
Tas
,
N.
Brunets
,
H. V.
Jansen
, and
M.
Elwenspoek
,
J. Appl. Phys.
104
,
014309
(
2008
).
21.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
H. Freeman
,
New York
,
1982
).
22.
G.
Gamrat
,
M.
Marinet
, and
S.
Person
,
Int. J. Thermal Sci.
48
,
2203
(
2009
).
23.
J.
Koo
and
C.
Kleinstreuer
,
Int. J. Heat Mass Transfer
48
,
2625
(
2005
).
24.
G. M.
Mala
and
D.
Li
,
Int. J. Heat Fluid Flow
20
,
142
(
1999
).
25.
M.
Van Dyke
and
S.
Rosenblat
,
Perturbation Method in Fluid Mechanics
(
Academic
,
1975
).
26.
S. Z.
Hua
,
Practical Manual of Fluid Resistance
(
China National Defense Industry Press
,
Beijing
,
1985
).
27.
N. R.
Tas
,
J.
Haneveld
,
H. V.
Jansen
,
M.
Elwenspoek
, and
A.
van den Berg
,
Appl. Phys. Lett.
85
,
3274
(
2004
).
28.
K. M.
van Delft
,
J. C. T.
Eijkel
,
D.
Mijatovic
,
T. S.
Druzhinina
,
H.
Rathgen
,
N. R.
Tas
,
A.
van den Berg
, and
F.
Mugele
,
J. Nano Lett.
7
,
345
(
2007
).
29.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 82nd ed. (
CRC Press
,
2001
), pp.
6
2
.
You do not currently have access to this content.