This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating voltage in a vibrating MSMA. In particular, 15 μW power is harvested for acceleration of 0.3 g RMS at a frequency of 19.1 Hz, which is comparable with piezoelectric energy harvesters. It is also found that the optimum bias magnetic field for maximum voltage is lower than the starting field of pseudo elastic behavior.

1.
S.
Priya
and
D. J.
Inman
,
Energy Harvesting Technologies
(
New York
:
Springer
,
2009
), Vol. 21.
2.
V.
Blarigan
,
L. J.
Moehlis
, and
R.
McMeeking
, “
Low dimensional modeling of a non-uniform, buckled piezoelectric beam for vibrational energy harvesting
,”
Smart Mater. Struct.
24
,
065012
(
2015
).
3.
I.
Karaman
,
B.
Basaran
,
H. E.
Karaca
,
A. I.
Karsilayan
, and
Y. I.
Chumlyakov
, “
Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy
,”
Appl. Phys. Lett.
90
,
172505
(
2007
).
4.
J.
Tellinen
,
I.
Suorsa
,
A.
Jääskeläinen
,
I.
Aaltio
, and
K.
Ullakko
, “
Basic properties of magnetic shape memory actuators
,” in
8th international conference ACTUATOR
(
2002
), pp.
566
569
.
5.
K.
Ullakko
,
J. K.
Huang
,
C.
Kantner
,
T. C.
O'handley
, and
V. V.
Kokorin
, “
Large magnetic-field-induced strains in Ni2MnGa single crystals
,”
Appl. Phys. Lett.
69
,
1966
1968
(
1996
).
6.
N. M.
Bruno
,
C.
Ciocanel
,
H. P.
Feigenbaum
, and
A.
Waldauer
, “
A theoretical and experimental investigation of power harvesting using the NiMnGa martensite reorientation mechanism
,”
Smart Mater. Struct.
21
,
094018
(
2012
).
7.
A. J.
Niskanen
and
I.
Laitinen
, “
Design and simulation of a Magnetic Shape Memory (MSM) alloy energy harvester
,”
Adv. Sci. Technol.
78
,
58
62
(
2013
).
8.
H.
Sayyaadi
and
M. A.
Askari Farsangi
, “
Frequency-dependent energy harvesting via magnetic shape memory alloys
,”
Smart Mater. Struct.
24
,
115022
(
2015
).
9.
A.
Saren
,
D.
Musiienko
,
A.
Smith
,
J.
Tellinen
, and
K.
Ullakko
, “
Modeling and design of a vibration energy harvester using the magnetic shape memory effect
,”
Smart Mater. Struct.
24
,
095002
(
2015
).
10.
M. A.
Askari Farsangi
,
H.
Sayyaadi
, and
M. R.
Zakerzadeh
, “
A novel inertial energy harvester using magnetic shape memory alloy
,”
Smart Mater. Struct.
25
,
105024
(
2016
).
11.
Y.
Uzun
and
E.
Kurt
, “
The effect of periodic magnetic force on a piezoelectric energy harvester
,”
Sens. Actuators, A
192
,
58
68
(
2013
).
12.
Y.
Uzun
,
E.
Kurt
, and
H. H.
Kurt
, “
Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum
,”
Sens. Actuators, A
224
,
119
130
(
2015
).
13.
D.
Spreemann
and
Y.
Manoli
,
Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization
(
Springer Science & Business Media
,
2012
), Vol. 35.
14.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
, “
Nonlinear energy harvesting
,”
Phys. Rev. Lett.
102
,
080601
(
2009
).
You do not currently have access to this content.