Aspheric optical lenses are important for a variety of optical applications but are difficult to fabricate in conventional top-down processes. Here, we have presented a bottom-up approach involving controlled spreading of a thermally crosslinkable polymeric liquid dispensed on specially prepared substrates for making aspheric bi-convex lenses. In particular, the substrate is a solid film with a tiny hole drilled on it through which the liquid can flow in and out from the top to the bottom side of the substrate. In addition, the two surfaces of the substrate are made to have similar or different wettabilities so that the combined effect of gravity and surface wettability determines the distribution of the liquid between its two sides. The substrate is maintained at an elevated temperature, so that the liquid spreads on its surfaces but only to a limited extent because of rapid crosslinking at the vicinity of the moving front. This process leads to bi-convex, hyperboloids and prolate spheroids, which yield aberration free images with optical resolution that far exceeds that generated by conventional microscope objectives.

1.
H. B.
Whittington
,
Fossils Illustrated 2—Trilobites
(
The Boydell Press
,
Woodbridge
,
1992
), Vol. 20, p.
193
.
3.
E. N. K.
Clarkson
and
R.
Levi-Setti
,
Nature
254
,
663
667
(
1975
).
4.
E. H.
Lockwood
,
A Book of Curves
(
Cambridge University Press
,
London
,
1961
),
p. 186
.
5.
H. S.
Kim
,
E. J.
Kim
, and
B. S.
Song
,
J. Mater. Process. Technol.
146
,
349
355
(
2004
).
6.
Y.
Gambin
,
O.
Legrand
, and
S. R.
Quake
,
Appl. Phys. Lett.
88
,
174102
(
2006
).
7.
A. Y.
Yi
and
A.
Jain
,
J. Am. Ceram. Soc.
88
(
3
),
579
586
(
2005
).
8.
P. M.
Shanbhag
,
M. R.
Feinberg
,
G.
Sandri
,
M. N.
Horenstein
, and
T. G.
Bifano
,
Appl. Opt.
39
(
4
),
599
611
(
2000
).
9.
A. C.
Roy
and
A.
Ghatak
,
Adv. Opt. Mater.
2
,
874
878
(
2014
).
10.
A. C.
Roy
,
M.
Yadav
,
E. P.
Arul
,
A.
Khanna
, and
A.
Ghatak
,
Langmuir
32
,
5356
5364
(
2016
).
11.
W. M.
Lee
,
A.
Upadhya
,
P. J.
Reece
, and
T. G.
Phan
,
Opt. Express
5
,
1626
1635
(
2014
).
12.
C. G.
Costa
,
J. M.
Gomes
,
R. F.
Wolffenbutte
, and
J. H.
Correia
,
Microsys. Technol.
22
(7),
1747
1755
(
2016
).
13.
C.
McDonald
and
D.
McGloin
,
RSC Adv.
5
,
55561
55565
(
2015
).
14.
C. A.
López
,
C. C.
Lee
, and
A. H.
Hirsa
,
Appl. Phys. Lett.
87
,
134102
(
2005
).
15.
A.
Tripathi
and
N.
Chronis
,
J. Micromech. Microeng.
21
,
105024
(
2011
).
16.
K.
Mishra
,
C.
Murade
,
B.
Carreel
,
I.
Roghair
,
J. M.
Oh
,
G.
Manukyan
,
D.
van den Ende
, and
F.
Mugele
,
Sci. Rep.
4
,
6378
(
2014
).
17.
S.
Kuiper
and
B. H. W.
Hendriks
,
Appl. Phys. Lett.
85
,
1128
1130
(
2004
).
18.
C.
Li
and
H.
Jiang
,
Appl. Phys. Lett.
100
,
231105
(
2012
).
19.
Z.
Zhan
,
K.
Wang
,
H.
Yao
, and
Z.
Cao
,
Appl. Opt.
48
(
22
),
4375
4380
(
2009
).
20.
X.
Li
,
H.
Tian
,
Y.
Ding
,
J.
Shao
, and
Y.
Wei
,
ACS Appl. Mater. Interfaces
5
,
9975
9982
(
2013
).
21.
H.
Yabu
and
M.
Shimomura
,
Langmuir
21
,
1709
1711
(
2005
).
22.
S.
Biswas
,
A.
Chakrabarti
,
A.
Chateauminois
,
E.
Wandersman
,
A. M.
Prevost
, and
M. K.
Chaudhury
,
Langmuir
31
,
13155
13164
(
2015
).
23.
A.
Verma
and
A.
Sharma
,
Adv. Mater.
22
(
46
),
5306
5309
(
2010
).
24.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Cambridge University Press
,
New York
,
1999
),
p. 211
.
25.
A.
Vaidya
and
M. K.
Chaudhury
,
J. Colloid Interface Sci.
249
(
1
),
235
245
(
2002
).
26.
E. M.
Blokhuis
,
Y.
Shilkrot
, and
B.
Widom
,
Mol. Phys.
86
(
4
),
891
899
(
1995
).
27.
G.
Kweon
and
C. H.
Kim
,
J. Korean Phys. Soc.
51
,
93
103
(
2007
).
28.
T.
Kamal
,
R.
Watkins
,
Z.
Cen
,
J.
Rubinstein
,
G.
Kong
, and
W. M.
Lee
,
Sci. Rep.
7
,
41482
(
2017
).

Supplementary Material

You do not currently have access to this content.