High-resolution core-level photoemission was used to examine the interaction between the oxidised silicon-terminated diamond (100) surface and the molecular acceptor MoO3. An observed downward shift in the Fermi level position, accompanied by the appearance of two distinct charge states of MoO3, indicates charge transfer from the surface into the MoO3 adlayer in the form of surface transfer doping with a concurrent accumulation of holes in the diamond.

1.
R. S.
Sussmann
,
CVD Diamond for Electronic Devices and Sensors
(
John Wiley & Sons
,
2009
), Vol.
26
.
2.
G.
Akhgar
,
O.
Klochan
,
L. H.
Willems van Beveren
,
M. T.
Edmonds
,
F.
Maier
,
B. J.
Spencer
,
J. C.
McCallum
,
L.
Ley
,
A. R.
Hamilton
, and
C. I.
Pakes
, “
Strong and tunable spin-orbit coupling in a two-dimensional hole gas in ionic-liquid gated diamond devices
,”
Nano Lett.
16
,
3768
3773
(
2016
).
3.
M. T.
Edmonds
,
L. H.
Willems van Beveren
,
O.
Klochan
,
J.
Cervenka
,
K.
Ganesan
,
S.
Prawer
,
L.
Ley
,
A. R.
Hamilton
, and
C. I.
Pakes
, “
Spin–orbit interaction in a two-dimensional hole gas at the surface of hydrogenated diamond
,”
Nano Lett.
15
,
16
20
(
2015
).
4.
F.
Maier
,
M.
Riedel
,
B.
Mantel
,
J.
Ristein
, and
L.
Ley
, “
Origin of surface conductivity in diamond
,”
Phys. Rev. Lett.
85
,
3472
(
2000
).
5.
M. T.
Edmonds
,
M.
Wanke
,
A.
Tadich
,
H. M.
Vulling
,
K. J.
Rietwyk
,
P. L.
Sharp
,
C. B.
Stark
,
Y.
Smets
,
A.
Schenk
,
Q.-H.
Wu
,
L.
Ley
, and
C. I.
Pakes
, “
Surface transfer doping of hydrogen-terminated diamond by C60F48: Energy level scheme and doping efficiency
,”
J. Chem. Phys.
136
,
124701
(
2012
).
6.
D.
Qi
,
W.
Chen
,
X.
Gao
,
L.
Wang
,
S.
Chen
,
K. P.
Loh
, and
A. T.
Wee
, “
Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane
,”
J. Am. Chem. Soc.
129
,
8084
8085
(
2007
).
7.
S. A.
Russell
,
L.
Cao
,
D.
Qi
,
A.
Tallaire
,
K. G.
Crawford
,
A. T.
Wee
, and
D. A.
Moran
, “
Surface transfer doping of diamond by MoO3: A combined spectroscopic and hall measurement study
,”
Appl. Phys. Lett.
103
,
202112
(
2013
).
8.
M.
Tordjman
,
C.
Saguy
,
A.
Bolker
, and
R.
Kalish
, “
Superior surface transfer doping of diamond with MoO3
,”
Adv. Mater. Interfaces
1
,
1300155
(
2014
).
9.
C.
Verona
,
W.
Ciccognani
,
S.
Colangeli
,
E.
Limiti
,
M.
Marinelli
, and
G.
Verona-Rinati
, “
Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators
,”
J. Appl. Phys.
120
,
025104
(
2016
).
10.
K. G.
Crawford
,
L.
Cao
,
D.
Qi
,
A.
Tallaire
,
E.
Limiti
,
C.
Verona
,
A. T.
Wee
, and
D. A.
Moran
, “
Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability
,”
Appl. Phys. Lett.
108
,
042103
(
2016
).
11.
A.
Schenk
,
A.
Tadich
,
M.
Sear
,
K. M.
O'Donnell
,
L.
Ley
,
A.
Stacey
, and
C.
Pakes
, “
Formation of a silicon terminated (100) diamond surface
,”
Appl. Phys. Lett.
106
,
191603
(
2015
).
12.
A.
Schenk
,
A.
Tadich
,
M.
Sear
,
D.
Qi
,
A.
Wee
,
A.
Stacey
, and
C.
Pakes
, “
The surface electronic structure of silicon terminated (100) diamond
,”
Nanotechnology
27
,
275201
(
2016
).
13.
A. K.
Schenk
,
M. J.
Sear
,
A.
Tadich
,
A.
Stacey
, and
C. I.
Pakes
, “
Oxidation of the silicon terminated (1 0 0) diamond surface
,”
J. Phys.: Condens. Matter
29
,
025003
(
2017
).
14.
M. T.
Edmonds
,
J. T.
Hellerstedt
,
A.
Tadich
,
A.
Schenk
,
K. M.
O'Donnell
,
J.
Tosado
,
N. P.
Butch
,
P.
Syers
,
J.
Paglione
, and
M. S.
Fuhrer
, “
Air-stable electron depletion of Bi2Se3 using molybdenum trioxide into the topological regime
,”
ACS Nano
8
,
6400
6406
(
2014
).
15.
D.
Langley
,
Y.
Smets
,
C.
Stark
,
M.
Edmonds
,
A.
Tadich
,
K.
Rietwyk
,
A.
Schenk
,
M.
Wanke
,
Q.-H.
Wu
,
P.
Barnard
 et al, “
Surface transfer doping of diamond with a molecular heterojunction
,”
Appl. Phys. Lett.
100
,
032103
(
2012
).
16.
A.
Schenk
,
K.
Rietwyk
,
A.
Tadich
,
A.
Stacey
,
L.
Ley
, and
C.
Pakes
, “
High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond
,”
J. Phys.: Condens. Matter
28
,
305001
(
2016
).
17.
D. A.
Shirley
, “
High-resolution x-ray photoemission spectrum of the valence bands of gold
,”
Phys. Rev. B
5
,
4709
(
1972
).
18.
R.
Graupner
,
F.
Maier
,
J.
Ristein
,
L.
Ley
, and
C.
Jung
, “
High-resolution surface-sensitive c 1 s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces
,”
Phys. Rev. B
57
,
12397
(
1998
).
19.
R.
Hunger
,
R.
Fritsche
,
B.
Jaeckel
,
W.
Jaegermann
,
L. J.
Webb
, and
N. S.
Lewis
, “
Chemical and electronic characterization of methyl-terminated Si (111) surfaces by high-resolution synchrotron photoelectron spectroscopy
,”
Phys. Rev. B
72
,
045317
(
2005
).
20.
F.
Maier
,
J.
Ristein
, and
L.
Ley
, “
Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces
,”
Phys. Rev. B
64
,
165411
(
2001
).
21.
M. T.
Greiner
,
L.
Chai
,
M. G.
Helander
,
W.-M.
Tang
, and
Z.-H.
Lu
, “
Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies
,”
Adv. Funct. Mater.
22
,
4557
4568
(
2012
).
22.
K.
Xue
,
H.
Ho
, and
J.
Xu
, “
Local study of thickness-dependent electronic properties of ultrathin silicon oxide near SiO2/Si interface
,”
J. Phys. D: Appl. Phys.
40
,
2886
(
2007
).
23.
M.
Kröger
,
S.
Hamwi
,
J.
Meyer
,
T.
Riedl
,
W.
Kowalsky
, and
A.
Kahn
, “
P-type doping of organic wide band gap materials by transition metal oxides: A case-study on molybdenum trioxide
,”
Org. Electron.
10
,
932
938
(
2009
).
24.
K. M.
O'Donnell
,
M. T.
Edmonds
,
A.
Tadich
,
L.
Thomsen
,
A.
Stacey
,
A.
Schenk
,
C. I.
Pakes
, and
L.
Ley
, “
Extremely high negative electron affinity of diamond via magnesium adsorption
,”
Phys. Rev. B
92
,
035303
(
2015
).
You do not currently have access to this content.