The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

1.
E.
Hantzsche
,
IEEE Trans. Plasma Sci.
31
,
799
(
2003
).
3.
J.
Polk
,
M.
Sekerak
,
J.
Ziemer
,
J.
Schein
,
N.
Qi
, and
A.
Anders
,
IEEE Trans. Plasma Sci.
36
,
2167
(
2008
).
4.
P.
Neumann
,
M.
Bilek
,
R.
Tarrant
, and
D.
McKenzie
,
Plasma Sources Sci. Technol.
18
,
045005
(
2009
).
5.
P.
Neumann
,
M.
Bilek
, and
D.
McKenzie
, in
Proceedings of the 12th Asia Pacific Physics Conference, JPS Conference Proceeding
(
2014
), Vol.
1
, p.
015059
.
6.
P.
Neumann
,
M.
Bilek
, and
D.
McKenzie
,
AIAA J. Propul. Power
28
,
218
(
2012
).
7.
M.
Keidar
,
T.
Zhuang
,
A.
Shashurin
,
G.
Teel
,
D.
Chiu
,
J.
Lukas
,
S.
Haque
, and
L.
Brieda
,
Plasma Phys. Controlled Fusion
57
,
014005
(
2015
).
8.
J.
Schein
,
N.
Qi
,
R.
Binder
,
M.
Krishnan
,
J.
Ziemer
,
J.
Polk
, and
A.
Anders
,
Rev. Sci. Instrum.
73
,
925
(
2002
).
9.
M.
Keidar
,
J.
Schein
,
K.
Wilson
,
A.
Gerhan
,
M.
Au
,
B.
Tang
,
L.
Idzkowski
,
M.
Krishnan
, and
I.
Beilis
,
Plasma Sources Sci. Technol.
14
,
661
(
2005
).
10.
B.
Gan
,
M.
Bilek
,
D.
McKenzie
,
P.
Swift
, and
G.
McCredie
,
Plasma Sources Sci. Technol.
12
,
508
(
2003
).
11.
L.
Ryves
,
D.
McKenzie
, and
M.
Bilek
,
IEEE Trans. Plasma Sci.
37
,
365
(
2009
).
12.
R.
Sackheim
and
S.
Zafran
,
Space Mission Analysis and Design
, edited by
W.
Larson
and
J.
Wertz
, 3rd ed. (
Microcosm Press
,
El Segundo, CA
,
2004
), Chap. 17.
13.
J.
Foster
,
T.
Haag
,
M.
Patterson
,
G.
Williams
,
J.
Sovey
,
C.
Carpenter
,
H.
Kamhawi
,
S.
Malone
, and
F.
Elliot
, in
NASA/TM—2004-213194, 40th Joint Propulsion Conference and Exhibition
, July (
2004
).
14.
D.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
, JPL Space Science and Technology Series (
Jet Propulsion Laboratory
,
California Institute of Technology
,
2008
), Chap. 9.
15.
A.
Anders
,
E.
Oks
, and
G.
Yushkov
,
J. Appl. Phys.
102
,
043303
(
2007
).
16.
G.
Yushkov
and
A.
Anders
,
Appl. Phys. Lett.
92
,
041502
(
2008
).
17.
A.
Anders
and
G.
Yushkov
,
Appl. Phys. Lett.
91
,
091502
(
2007
).
18.
R.
Sanginés
,
A.
Israel
,
I.
Falconer
,
D.
McKenzie
, and
M.
Bilek
,
Appl. Phys. Lett.
96
,
221501
(
2010
).
19.
20.
J.
Rosen
,
J.
Schneider
, and
A.
Anders
,
Appl. Phys. Lett.
89
,
141502
(
2006
).
21.
L.
Chen
,
D.
Jin
,
L.
Cheng
,
L.
Shi
,
X.
Tan
,
W.
Xiang
,
J.
Dai
, and
S.
Hu
,
Vacuum
86
,
813
(
2012
).
22.
J.
Pelletier
and
A.
Anders
,
IEEE Trans. Plasma Sci.
33
,
1944
(
2005
).
23.
I.
Tan
,
M.
Uedaa
,
R.
Dallaquaa
,
J.
Rossia
,
A.
Belotob
,
M.
Tabacniksc
,
N.
Demarquetted
, and
Y.
Inoue
,
Surf. Coat. Technol.
186
,
234
(
2004
).
24.
V.
Zaporojtchenko
,
K.
Behnke
,
A.
Thran
,
T.
Strunskus
, and
F.
Faupel
,
Appl. Surf. Sci.
144–145
,
355
(
1999
).
25.
E.
van Veldhuizen
and
J.
de Hoog
,
J. Phys. D: Appl. Phys
17
,
953
(
1984
).
26.
K.
Obara
,
Z.
Fu
,
M.
Arima
,
T.
Yamada
,
T.
Fujikawa
,
N.
Imamura
, and
N.
Terada
,
J. Cryst. Growth
237–239
,
2041
(
2002
).
27.
G.
Chapman
,
B.
Farmery
,
M.
Thompson
, and
I.
Wilson
,
Radiat. Effects
13
,
121
(
1972
).
28.
Y.
Yamamura
and
H.
Tawara
,
At. Data Nucl. Data Tables
62
,
149
(
1996
).
29.
G.
Yushkov
and
A.
Anders
,
J. Appl. Phys.
105
,
043303
(
2009
).
30.
CRC Handbook of Chemistry and Physics
, edited by
D.
Lide
, 84th ed. (
CRC Press
,
Boca Raton, FL
,
2003
), Sect. 4.
31.
R.
Honig
,
RCA Rev.
18
,
195
(
1957
).
33.
N.
Oudini
,
G.
Hagelaar
,
J.-P.
Boeuf
, and
L.
Garrrigues
,
J. Appl. Phys.
109
,
073310
(
2011
).
34.
E.
Cubbin
,
J.
Ziemer
,
E.
Choueiri
, and
R.
Jahn
,
Rev. Sci. Instrum.
68
,
2339
(
1997
).
35.
G.
Wehner
and
D.
Rosenberg
,
J. Appl. Phys.
31
,
177
(
1960
).
36.
T.
Oates
,
J.
Pigott
,
D.
Mckenzie
, and
M.
Bilek
,
Rev. Sci. Instrum.
74
,
4750
(
2003
).
37.
I.
Brown
and
H.
Shiraishi
,
IEEE Trans. Plasma Sci.
18
,
170
(
1990
).

Supplementary Material

You do not currently have access to this content.