Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P12=(5.3±0.4)×10-11Pa-1,P11=(2.6±0.6)×10-11Pa-1, and P44=(11.42±0.6)×10-11Pa-1. Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

1.
B.
Halg
,
J. Appl. Phys.
64
,
276
(
1988
).
2.
A.
Nathan
and
T.
Manku
,
Appl. Phys. Lett.
62
,
2947
(
1993
).
3.
R. G.
Mani
,
K.
von Klitzing
,
F.
Jost
,
K.
Marx
,
S.
Lindenkreuz
, and
H. P.
Trah
,
Appl. Phys. Lett.
67
,
2223
(
1995
).
4.
S.
Huber
,
C.
Schott
, and
O.
Paul
,
IEEE Sens. J.
13
(
8
),
2890
(
2013
).
5.
Y.
Liu
,
Z. L.
Rang
,
A. K.
Fung
,
C.
Cai
,
P. P.
Ruden
,
M. I.
Nathan
, and
H.
Shtrikman
,
Appl. Phys. Lett.
79
(
27
),
4586
(
2001
).
6.
J. M.
Cesaretti
,
W. P.
Taylor
,
G.
Monreal
, and
O.
Brand
,
IEEE Trans. Magn.
45
(
10
),
4482
(
2009
).
7.
H.
Husstedt
,
U.
Ausserlechner
, and
M.
Kaltenbache
,
IEEE Sens. J.
11
(
11
),
2993
(
2011
).
8.
R.
Steiner
,
C.
Maier
,
M.
Mayer
,
S.
Bellekom
, and
H.
Baltes
,
J. Microelectromech. Syst.
8
(
4
),
466
(
1999
).
9.
D.
Manic
,
J.
Petr
, and
R. S.
Popovic
,
Microelectron. Reliab.
41
,
767
(
2001
).
10.
M.
Mehregany
,
C. A.
Zorman
,
N.
Rajan
, and
C. H.
Wu
,
Proc. IEEE
86
(
8
),
1594
(
1998
).
11.
P. M.
Sarro
,
Sens. Actuators, A
82
(
1–3
),
210
(
2000
).
12.
S.
Roy
,
C.
Jacob
, and
S.
Basu
,
Sens. Actuat. B-Chem.
94
,
298
(
2003
).
13.
F.
La Via
,
M.
Camarda
, and
A.
La Magna
,
Appl. Phys. Rev.
1
,
031301
(
2014
).
14.
H.-P.
Phan
,
D. V.
Dao
,
K.
Nakamura
,
S.
Dimitrijev
, and
N.-T.
Nguyen
,
J. Microelectromech. Syst.
24
(
6
),
1663
(
2015
).
15.
H. P.
Phan
,
D. V.
Dao
,
P.
Tanner
,
L.
Wang
,
N. T.
Nguyen
,
Y.
Zhu
, and
S.
Dimitrijev
,
Appl. Phys. Lett.
104
(
11
),
111905
(
2014
).
16.
A.
Qamar
,
P.
Tanner
,
D. V.
Dao
,
H. P.
Phan
, and
T.
Dinh
,
IEEE Electron Device Lett.
35
(
12
),
1293
(
2014
).
17.
A.
Qamar
,
D. V.
Dao
,
P.
Tanner
,
H. P.
Phan
,
T.
Dinh
, and
S.
Dimitrijev
,
Appl. Phys. Express
8
(
6
),
061302
(
2015
).
18.
A.
Qamar
,
H. P.
Phan
,
D. V.
Dao
,
P.
Tanner
,
T.
Dinh
,
L.
Wang
, and
S.
Dimitrijev
,
IEEE Electron Device Lett.
36
(
7
),
708
(
2015
).
19.
A.
Qamar
,
H. P.
Phan
,
J.
Han
,
P.
Tanner
,
T.
Dinh
,
L.
Wang
,
D. V.
Dao
, and
S.
Dimitrijev
,
J. Mater. Chem. C
3
,
8804
(
2015
).
20.
C.-M.
Lin
,
Y.-Y.
Chen
,
V. V.
Felmetsger
,
D. G.
Senesky
, and
A. P.
Pisano
,
Adv. Mater.
24
(
20
),
2722
(
2012
).
21.
C.-M.
Lin
,
Y.-Y.
Chen
,
V. V.
Felmetsger
,
W.-C.
Lien
,
T.
Riekkinen
,
D. G.
Senesky
, and
A. P.
Pisano
,
J. Micromech. Microeng.
23
,
025019
(
2013
).
22.
A.
Qamar
,
H.-P.
Phan
,
T.
Dinh
,
L.
Wang
,
S.
Dimitrijev
, and
D. V.
Dao
,
RSC Adv.
6
(
37
),
31191
(
2016
).
23.
L.
Wang
,
S.
Dimitrijev
,
J.
Han
,
P.
Tanner
,
A.
Iacopi
, and
L.
Hold
,
J. Cryst. Growth
329
(
1
),
67
(
2011
).
24.
L.
Wang
,
A.
Iacopi
,
S.
Dimitrijev
,
G.
Walker
,
A.
Fernandes
,
L.
Hold
, and
J.
Chaia
,
Thin Solid Films
564
,
39
(
2014
).
25.
H. P.
Phan
,
D. V.
Dao
,
P.
Tanner
,
N. T.
Nguyen
,
J. S.
Han
,
S.
Dimitrijev
,
G.
Walker
,
L.
Wang
, and
Y.
Zhu
,
J. Mater. Chem. C
2
,
7176
(
2014
).
26.
A.
Udo
, in
Proceedings of IEEE Sensors 2004
(
IEEE
,
2004
), Vol.
3
, pp.
1149
1152
.

Supplementary Material

You do not currently have access to this content.