The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearly as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al2O3.

1.
Y. C.
Chang
,
W. H.
Chang
,
H. C.
Chiu
,
L. T.
Tung
,
C. H.
Lee
,
K. H.
Shiu
,
M.
Hong
,
J.
Kwo
,
J. M.
Hong
, and
C. C.
Tsai
,
Appl. Phys. Lett.
93
,
053504
(
2008
).
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
3.
S.
Canulescu
,
K.
Rechendorff
,
C. N.
Borca
,
N. C.
Jones
,
K.
Bordo
,
J.
Schou
,
L.
Pleth Nielsen
,
S. V.
Hoffmann
, and
R.
Ambat
,
Appl. Phys. Lett.
104
,
121910
(
2014
).
4.
M.
Santamaria
,
F.
Di Franco
,
F.
Di Quarto
,
P.
Skeldon
, and
G. E.
Thompson
,
J. Phys. Chem. C
117
,
4201
(
2013
).
5.
M.
Santamaria
,
F.
Di Quarto
, and
H.
Habazaki
,
Corros. Sci.
50
,
2012
(
2008
).
6.
R. J.
Jung
,
J. C.
Lee
,
Y. W.
So
,
T. W.
Noh
,
S. J.
Oh
,
J. C.
Lee
, and
H. J.
Shin
,
Appl. Phys. Lett.
83
,
5226
(
2003
).
7.
V. C.
Gudla
,
S.
Canulescu
,
R.
Shabadi
,
K.
Rechendorff
,
K.
Dirscherl
, and
R.
Ambat
,
Appl. Surf. Sci.
317
,
1113
(
2014
).
8.
C.
Piamonteze
,
U.
Flechsig
,
S.
Rusponi
,
J.
Dreiser
,
J.
Heidler
,
M.
Schmidt
,
R.
Wetter
,
M.
Calvi
,
T.
Schmidt
,
H.
Pruchova
,
J.
Krempasky
,
C.
Quitmann
,
H.
Brune
, and
F.
Nolting
,
J. Synchrotron. Radiat.
19
,
661
(
2012
).
9.
J.
Krempasky
,
U.
Flechsig
,
T.
Korhonen
,
D.
Zimoch
,
Ch.
Quitmann
, and
F.
Nolting
,
AIP Conf. Proc.
1234
,
705
(
2010
).
10.
F. M. F.
Degroot
,
M.
Grioni
,
J. C.
Fuggle
,
J.
Ghijsen
,
G. A.
Sawatzky
, and
H.
Petersen
,
Phys. Rev. B
40
,
5715
(
1989
).
11.
M.
Haverty
,
A.
Kawamoto
,
K.
Cho
, and
R.
Dutton
,
Appl. Phys. Lett.
80
,
2669
(
2002
).
12.
T. P.
Woodman
,
Thin Solid Films
9
,
195
(
1972
).
13.
G. K.
Mor
,
O. K.
Varghese
,
M.
Paulose
, and
C. A.
Grimes
,
Adv. Funct. Mater.
15
,
1291
(
2005
).
14.
15.
E. A.
Davis
and
N. F.
Mott
,
Philos. Mag.
22
,
903
(
1970
).
16.
D.
Tahir
,
H. L.
Kwon
,
H. C.
Shin
,
S. K.
Oh
,
H. J.
Kang
,
S.
Heo
,
J. G.
Chung
,
J. C.
Lee
, and
S.
Tougaard
,
J. Phys. D: Appl. Phys.
43
,
255301
(
2010
).
17.
E. O.
Filatova
and
A. S.
Konashuk
,
J. Phys. Chem. C
119
,
20755
(
2015
).
18.
X.
Wang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
,
T.
Nagaoka
,
M.
Arita
, and
Q.
Guo
,
Appl. Phys. Lett.
107
,
022111
(
2015
).
19.
F.
Trivinho-Strixino
,
F. E. G.
Guimaraes
, and
E. C.
Pereira
,
Chem. Phys. Lett.
461
,
82
(
2008
).
20.
D. B.
Khadka
and
J. H.
Kim
,
J. Phys. Chem. C
119
,
1706
(
2015
).
21.
S.-H.
Wei
and
A.
Zunger
,
Phys. Rev. Lett.
76
,
664
(
1996
).

Supplementary Material

You do not currently have access to this content.