This work presents a study on the controlled growth and the growth mechanism of vapour-phase deposited two-dimensional Bi2Te3 nanostructures by investigating the influence of growth conditions on the morphology of Bi2Te3 nanostructures. The formation of a hexagonal plate geometry for Bi2Te3 nanostructures is a consequence of the large difference in growth rate between crystal facets along 〈0001〉 and 〈112¯0〉 directions. Under low Ar carrier gas flow rates (60–100 sccm), the growth of Bi2Te3 nanoplates occurs in the mass-transport limited regime, whereas under high carrier gas flow rates (130 sccm), the growth of Bi2Te3 nanoplates is in the surface-reaction limited regime. This leads to an increase in the lateral size of Bi2Te3 nanoplates with increasing the Ar carrier gas flow rate from 60 to 100 sccm, and a decrease in size for a flow rate of 130 sccm. In addition, the lateral size of Bi2Te3 nanoplates was found to increase with increasing growth time due to the kinetic characteristics of material growth. The proposed growth model provides an effective guide for achieving controlled growth of Bi2Te3 nanoplates, as well as other two dimensional nanomaterials.

1.
H. J.
Zhang
,
C. X.
Liu
,
X. L.
Qi
,
X.
Dai
,
Z.
Fang
, and
S. C.
Zhang
,
Nat. Phys.
5
,
438
(
2009
).
2.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
3.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
(
2010
).
4.
L. D.
Alegria
,
N.
Yao
, and
J. R.
Petta
,
Phys. Status Solidi RRL
8
,
991
(
2014
).
5.
Y.
Wang
,
F.
Xiu
,
L.
Cheng
,
L.
He
,
M.
Lang
,
J.
Tang
,
X.
Kou
,
X.
Yu
,
X.
Jiang
,
Z.
Chen
,
J.
Zou
, and
K. L.
Wang
,
Nano Lett.
12
,
1170
(
2012
).
6.
D.
Kong
,
J. C.
Randel
,
H.
Peng
,
J. J.
Cha
,
S.
Meister
,
K.
Lai
,
Y.
Chen
,
Z.
Shen
,
H. C.
Manoharan
, and
Y.
Cui
,
Nano Lett.
10
,
329
(
2010
).
7.
H.
Li
,
J.
Cao
,
W.
Zheng
,
Y.
Chen
,
D.
Wu
,
W.
Dang
,
K.
Wang
,
H.
Peng
, and
Z.
Liu
,
J. Am. Chem. Soc.
134
,
6132
(
2012
).
8.
D.
Kong
,
W.
Dang
,
J. J.
Cha
,
H.
Li
,
S.
Meister
,
H.
Peng
,
Z.
Liu
, and
Yi.
Cui
,
Nano Lett.
10
,
2245
(
2010
).
9.
R. B.
Jacobs-Gedrim
,
C. A.
Durcan
,
N.
Jain
, and
B.
Yu
,
Appl. Phys. Lett.
101
,
143103
(
2012
).
10.
G.
Hao
,
X.
Qi
,
Y.
Liu
,
Z.
Huang
,
H.
Li
,
K.
Huang
,
J.
Li
,
L.
Yang
, and
J.
Zhong
,
J. Appl. Phys.
111
,
114312
(
2012
).
11.
L.
Guo
,
B. C.
Ivey
,
A.
Aglan
,
C.
Tang
,
J.
Song
,
C. H.
Turner
,
R. M.
Frazier
,
A.
Gupta
, and
H. T.
Wang
,
ECS Solid State Lett.
2
,
19
(
2013
).
12.
Y.
Zhao
,
M.
de la Mata
,
R. L. J.
Qiu
,
J.
Zhang
,
X.
Wen
,
C.
Magen
,
X. P. A.
Gao
,
J.
Arbiol
, and
Q.
Xiong
,
Nano Res.
7
,
1243
(
2014
).
13.
Y.
Jiang
,
X.
Zhang
,
Y.
Wang
,
N.
Wang
,
D.
West
,
S.
Zhang
, and
Z.
Zhang
,
Nano Lett.
15
,
3147
(
2015
).
14.
K. M. F.
Shahil
,
M. Z.
Hossain
,
V.
Goyal
, and
A. A.
Balandind
,
J. Appl. Phys.
111
,
054305
(
2012
).
15.
J. D.
Plummer
,
M.
Deal
, and
P. D.
Griffin
, “
Chapter 9: Thin film deposition
” in
Silicon VLSI Technology: Fundamentals, Practice, and Modeling
, 1st ed. (
Prentice Hall
,
Upper Saddle River, NJ
,
2000
).
16.
W.
Lei
,
H. H.
Tan
, and
C.
Jagadish
,
Appl. Phys. Lett
95
,
013108
(
2009
).
17.
C.
Zhao
,
Y. H.
Chen
,
C. X.
Cui
,
B.
Xu
,
J.
Sun
,
W.
Lei
,
L. K.
Lu
, and
Z. G.
Wan
,
J. Chem. Phys.
123
,
094708
(
2005
).
18.
L. K.
Yu
,
B.
Xu
,
Z. G.
Wang
,
P.
Jin
,
C.
Zhao
,
W.
Lei
,
J.
Sun
,
K.
Li
,
L. J.
Hu
, and
L. Y.
Liang
,
J. Cryst. Growth
282
,
173
(
2005
).
You do not currently have access to this content.