Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

1.
M.
Shahinpoor
,
Proc. SPIE
2441
,
42
53
(
1995
).
2.
M.
Shahinpoor
and
K. J.
Kim
,
Smart Mater. Struct.
10
(
4
),
819
833
(
2001
).
3.
N.
Kamamichi
,
M.
Yamakita
,
K.
Asaka
,
Z.
Luo
, and
T.
Mukai
, in
IEEE Sensors
,
2007
, pp.
221
224
.
4.
Y.
Wu
,
G.
Alici
,
J. D. W.
Madden
,
G. M.
Spinks
, and
G. G.
Wallace
,
Adv. Funct. Mater.
17
(
16
),
3216
3222
(
2007
).
5.
K.
Kruusamäe
,
A.
Punning
,
A.
Aabloo
, and
K.
Asaka
,
Actuators
4
(
1
),
17
38
(
2015
).
6.
R.
Tiwari
and
K. J.
Kim
,
Smart Mater. Struct.
22
(
1
),
015017
(
2013
).
7.
D. J.
Lipomi
,
M.
Vosgueritchian
,
B. C.-K.
Tee
,
S. L.
Hellstrom
,
J. A.
Lee
,
C. H.
Fox
, and
Z.
Bao
,
Nat. Nanotechnol.
6
(
12
),
788
792
(
2011
).
8.
Y.
Yang
,
H.
Zhang
,
Z.
Lin
,
Y.
Zhou
,
Q.
Jing
,
Y.
Su
,
J.
Yang
,
J.
Chen
,
C.
Hu
, and
Z.
Wang
,
ACS Nano
7
(
10
),
9213
9222
(
2013
).
9.
M.
Shahinpoor
,
Y.
Bar-Cohen
,
T.
Xue
,
J. S.
Harrison
, and
J. G.
Smith
,
Proc. SPIE
3324
,
251
267
(
1998
).
10.
J.
Wang
,
C.
Xu
,
M.
Taya
, and
Y.
Kuga
,
Proc. SPIE
6524
,
65241K-1
(
2007
).
11.
M.
Konyo
,
Y.
Konishi
,
S.
Tadokoro
, and
T.
Kishima
,
Proc. SPIE
5385
,
307
318
(
2004
).
12.
N.
Kamamichi
,
M.
Yamakita
,
K.
Asaka
,
Z. W.
Luo
, and
T.
Mukai
, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
2007
), pp.
1172
1177
.
13.
I.
Must
,
F.
Kaasik
,
I.
Põldsalu
,
U.
Johanson
,
A.
Punning
, and
A.
Aabloo
,
Carbon
50
(
2
),
535
541
(
2012
).
14.
C.
Bonomo
,
L.
Fortuna
,
P.
Giannone
, and
S.
Graziani
,
Sens. Actuators, A
123–124
(
23
),
146
154
(
2005
).
15.
Y.
Bahramzadeh
and
M.
Shahinpoor
,
Smart Mater. Struct.
20
(
9
),
094011
(
2011
).
16.
Z.
Zhu
,
T.
Horiuchi
,
K.
Kruusamäe
,
L.
Chang
, and
K.
Asaka
,
J. Phys. Chem. B
120
,
3215
3225
(
2016
).
17.
Z.
Zhu
,
L.
Chang
,
T.
Horiuchi
,
K.
Takagi
,
A.
Aabloo
, and
K.
Asaka
,
J. Appl. Phys.
119
,
124901
(
2016
).
18.
K. J.
Kim
and
M.
Shahinpoor
,
Smart Mater. Struct.
12
(
1
),
65
79
(
2003
).
19.
L.
Chang
,
H.
Chen
,
Z.
Zhu
, and
B.
Li
,
Smart Mater. Struct.
21
,
065018
(
2012
).
20.
Y.
Wang
,
Z.
Zhu
,
H.
Chen
,
B.
Luo
,
L.
Chang
,
Y.
Wang
, and
D.
Li
,
Smart Mater. Struct.
23
(
12
),
125015
125026
(
2014
).
21.
V.
Palmre
,
D.
Pugal
, and
K.
Kim
,
Proc. SPIE
9056
,
905605
(
2014
).
22.
Y.
Li
, Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg
,
2008
.
You do not currently have access to this content.