Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter with plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.

1.
E. R.
Brown
,
K. A.
Mclntosh
,
K. B.
Nichols
, and
C. L.
Dennis
,
Appl. Phys. Lett.
66
,
285
287
(
1995
).
2.
I. S.
Gregory
,
C.
Baker
,
W. R.
Tribe
,
I. V.
Bradley
,
M. J.
Evans
,
E. H.
Linfield
,
A. G.
Davies
, and
M.
Missous
,
IEEE J. Quantum Electron.
41
,
717
728
(
2005
).
3.
M. E.
Exter
,
Ch.
Fattinger
, and
D.
Grischkowsky
,
Appl. Phys. Lett.
55
,
337
339
(
1989
).
4.
P. U.
Jepsen
,
R. H.
Jacobsen
, and
S. R.
Keiding
,
J. Opt. Soc. Am. B
13
,
2424
2436
(
1996
).
5.
K.
Moon
,
J.
Choi
,
J.-H.
Shin
,
S.-P.
Han
,
H.
Ko
,
N.
Kim
,
J.-W.
Park
,
Y.-J.
Yoon
,
K.-Y.
Kang
,
H.-C.
Ryu
, and
K. H.
Park
,
ETRI J.
36
,
159
162
(
2014
).
6.
H.
Tanoto
,
J. H.
Teng
,
Q. Y.
Wu
,
M.
Sun
,
Z. N.
Chen
,
S. A.
Maier
,
B.
Wang
,
C. C.
Chum
,
G. Y.
Si
,
A. J.
Danner
, and
S. J.
Chua
,
Sci. Rep.
3
,
2824
(
2013
).
7.
Q. Y. S.
Wu
,
H.
Tanoto
,
L.
Ding
,
C. C.
Chum
,
B.
Wang
,
A. B.
Chew
,
A.
Banas
,
K.
Banas
,
S. J.
Chua
, and
J.
Teng
,
Nanotechnology
26
,
255201
(
2015
).
8.
S.-H.
Yang
,
M. R.
Hashemi
,
C. W.
Berry
, and
M.
Jarrahi
,
IEEE Trans. Terahertz Sci. Technol.
4
,
575
581
(
2014
).
9.
G.
Seniutinas
,
G.
Gervinskas
,
E.
Constable
,
A.
Krotkus
,
G.
Molis
,
G.
Valušis
,
R. A.
Lewis
, and
S.
Juodkazis
,
Proc. SPIE
8923
,
892322
(
2013
).
10.
C. W.
Berry
,
N.
Wang
,
M. R.
Hashemi
,
M.
Unlu
, and
M.
Jarrahi
,
Nat. Commun.
4
,
1622
(
2013
).
11.
S.-G.
Park
,
Y.
Choi
,
Y.-J.
Oh
, and
K.-H.
Jeong
,
Opt. Express
20
,
25530
25535
(
2012
).
12.
S.-G.
Park
,
K. H.
Jin
,
M.
Yi
,
J. C.
Ye
,
J.
Ahn
, and
K.-H.
Jeong
,
ACS Nano
6
,
2026
2031
(
2012
).
13.
A.
Jooshesh
,
L.
Smith
,
M.
Masnadi-Shirazi
,
V.
Bahrami-Yekta
,
T.
Tiedje
,
T. E.
Darcie
, and
R.
Gordon
,
Opt. Express
22
,
27992
28001
(
2014
).
14.
K.
Moon
,
I.-M.
Lee
,
S.-H.
Shin
,
E. S.
Lee
,
N.
Kim
,
W.-H.
Lee
,
H.
Ko
,
S.-P.
Han
, and
K. H.
Park
,
Sci. Rep.
5
,
13817
(
2015
).
15.
N.
Khiabani
,
Y.
Huang
,
L. E.
Garcia-Muňoz
,
Y.-C.
Shen
, and
A.
Rivera-Labato
,
IEEE Trans. Terahertz Sci. Technol.
4
,
501
508
(
2014
).
16.
Y.
Cai
,
I.
Brener
,
J.
Lopata
,
J.
Wynn
,
L.
Pfeiffer
, and
J.
Federici
,
Appl. Phys. Lett.
71
,
2076
2078
(
1997
).
17.
S.
Jafarlou
,
M.
Neshat
, and
S.
Safavi-Naeini
,
Opt. Express
21
,
11115
11124
(
2013
).
18.
F.
Xia
,
H.
Wang
,
D.
Xiao
,
M.
Dubey
, and
A.
Ramasubramaniam
,
Nat. Photonics
8
,
899
907
(
2014
).
19.
G. R.
Bhimanapati
,
Z.
Lin
,
V.
Meunier
,
Y.
Jung
,
J.
Cha
,
S.
Das
,
D.
Xiao
,
Y.
Son
,
M. S.
Strano
,
V. R.
Cooper
,
L.
Liang
,
S. G.
Louie
,
E.
Ringe
,
W.
Zhou
,
S. S.
Kim
,
R. R.
Naik
,
B. G.
Sumpter
,
H.
Terrones
,
F.
Xia
,
Y.
Wang
,
J.
Zhu
,
D.
Akinwande
,
N.
Alem Nasim
,
J. A.
Schuller
,
R. E.
Schaak
,
M.
Terrones
, and
J. A.
Robinson
,
ACS Nano
9
,
11509
11539
(
2015
).
20.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
712
(
2012
).
21.
M.
Tani
,
S.
Matsuura
,
K.
Sakai
, and
S.-I.
Nakashima
,
Appl. Opt.
36
,
7853
7859
(
1997
).
22.
C. W.
Siders
,
J. L. W.
Siders
,
A. J.
Taylor
,
S.-G.
Park
,
M. R.
Melloch
, and
A. M.
Weiner
,
Opt. Lett.
24
,
241
243
(
1999
).
23.
G.
Segschneider
,
F.
Jacob
,
T.
Löffler
, and
H. G.
Roskos
,
Phys. Rev. B
65
,
125205
(
2002
).
24.
N.
Zamdmer
,
Q.
Hu
,
K. A.
Mclntosh
, and
S.
Verghese
,
Appl. Phys. Lett.
75
,
2313
2315
(
1999
).
25.
J.
Betko
,
P.
Kordos
,
S.
Kuklovsky
,
A.
Förster
,
D.
Gregusova
, and
H.
Lüth
,
Mater. Sci. Eng. B
28
,
147
150
(
1994
).

Supplementary Material

You do not currently have access to this content.