3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

1.
E.
Meyer
,
H. J.
Hug
, and
R.
Bennewitz
,
Scanning Probe Microscopy–The Lab on a Tip
(
Springer-Verlag
,
Heidelberg
,
2004
).
2.
P.
Eaton
and
P.
West
,
Atomic Force Microscopy
(
Oxford University Press
,
Oxford
,
2010
).
3.
U. D.
Schwarz
,
H.
Haefke
,
P.
Reimann
, and
H. J.
Güntherodt
,
J. Microsc.
173
,
183
(
1994
).
4.
G.
Dai
,
H.
Wolff
,
F.
Pohlenz
,
H.-U.
Danzebrink
, and
G.
Wilkening
,
Appl. Phys. Lett.
88
,
171908
(
2006
).
5.
O.
Sahin
,
S.
Magonov
,
C.
Su
,
C. F.
Quate
, and
O.
Solgaard
,
Nat. Nanotechnol.
2
,
507
(
2007
).
6.
S. D.
Solares
and
H.
Hölscher
,
J. Vac. Sci. Technol., B
28
,
C4E1
(
2010
).
7.
S. D.
Solares
and
H.
Hölscher
,
Nanotechnology
21
,
075702
(
2010
).
8.
O.
Wolter
,
T.
Bayer
, and
J.
Greschner
,
J. Vac. Sci. Technol., B
9
,
1353
(
1991
).
9.
L. H.
Mak
,
M.
Knoll
,
D.
Weiner
,
A.
Gorschlüter
,
A.
Schirmeisen
, and
H.
Fuchs
,
Rev. Sci. Instrum.
77
,
046104
(
2006
).
10.
J.-E.
Schmutz
,
M. M.
Schäfer
, and
H.
Hölscher
,
Rev. Sci. Instrum.
79
,
026103
(
2008
).
11.
F. J.
Giessibl
,
Appl. Phys. Lett.
73
,
3956
(
1998
).
12.
M.
Tortonese
,
R. C.
Barrett
, and
C. F.
Quate
,
Appl. Phys. Lett.
62
,
834
(
1993
).
13.
S.
Hafizovic
,
D.
Barrettino
,
T.
Volden
,
J.
Sedivy
,
K. U.
Kirstein
,
O.
Brand
, and
A.
Hierlemann
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
17011
(
2004
).
14.
A.
Tavassolizadeh
,
T.
Meier
,
K.
Rott
,
G.
Reiss
,
E.
Quandt
,
H.
Hölscher
, and
D.
Meyners
,
Appl. Phys. Lett.
102
,
153104
(
2013
).
15.
J.
Falter
,
M.
Stiefermann
,
G.
Langewisch
,
P.
Schurig
,
H.
Hölscher
,
H.
Fuchs
, and
A.
Schirmeisen
,
Beilstein J. Nanotechnol.
5
,
507
(
2014
).
16.
J. M.
Kim
and
H.
Maramatsu
,
Nano Lett.
5
,
309
(
2005
).
17.
W.-S.
Kim
,
K.-M.
Park
,
J. J.
Park
,
S.-M.
Chang
,
I.-H.
Kim
,
H.
Muramatsu
, and
J. M.
Kim
,
Curr. Appl. Phys.
7
,
528
(
2007
).
18.
B. J.
Jung
,
H. J.
Kong
,
Y.-H.
Cho
,
C. H.
Park
,
M. K.
Kim
,
B. G.
Jeon
,
D.-Y.
Yang
, and
K.-S.
Lee
,
Curr. Appl. Phys.
13
,
2064
(
2013
).
19.
J. S.
Lee
,
J.
Song
,
S. O.
Kim
,
S.
Kim
,
W.
Lee
,
J. A.
Jackman
,
D.
Kim
,
N.-J.
Cho
, and
J.
Lee
,
Nat. Commun.
7
,
11566
(
2016
).
20.
S.
Sharma
,
A.
Sharma
,
Y.-K.
Cho
, and
M.
Madou
,
ACS Appl. Mater. Interfaces
4
,
34
(
2012
).
21.
J.
Bauer
,
A.
Schroer
,
R.
Schwaiger
, and
O.
Kraft
,
Nat. Mater.
15
,
438
443
(
2016
).
22.
O.
Schueller
,
S. T.
Brittain
,
C.
Marzolin
, and
G. M.
Whitesides
,
Chem. Mater.
9
,
1399
(
1997
).
23.
S.
Sharma
and
M.
Madou
,
Bioinspired, Biomimetic Nanobiomater.
1
,
252
(
2012
).
24.
J.
Bauer
,
A.
Schroer
,
R.
Schwaiger
,
I.
Tesari
,
C.
Lange
,
L.
Valdevit
, and
O.
Kraft
,
Extreme Mech. Lett.
3
,
105
(
2015
).
25.
B.
Bhushan
and
K. J.
Kwak
,
Appl. Phys. Lett.
91
,
163113
(
2007
).
26.
N. F.
Martinez
,
S.
Patil
,
J. R.
Lozano
, and
R.
Garcia
,
Appl. Phys. Lett.
89
,
153115
(
2006
).
27.
R.
Proksch
,
Appl. Phys. Lett.
89
,
113121
(
2006
).
28.
D.
Ebeling
and
S. D.
Solares
,
Nanotechnology
24
,
135702
(
2013
).
29.
J.
Hossenlopp
,
L.
Jiang
,
R.
Cernosek
, and
F.
Josse
,
J. Polym. Sci.: Polym.
42
,
2373
(
2004
).
You do not currently have access to this content.