Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O2 or N2 environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N2 environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O2, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

1.
T.
Jüstel
,
H.
Nikol
, and
C.
Ronda
, “
New Developments in the field of luminescent materials for lighting and displays
,”
Angew. Chem. Int. Ed.
37
,
3084
(
1998
).
2.
K.
Binnemans
, “
Lanthanide-based luminescent hybrid materials
,”
Chem. Rev.
109
,
4283
(
2009
).
3.
B. M.
van der Ende
,
L.
Aarts
, and
A.
Meijerink
, “
Lanthanide ions as spectral converters for solar cells
,”
Phys. Chem. Chem. Phys.
11
,
11081
(
2009
).
4.
F.
Priolo
,
T.
Gregorkiewicz
,
M.
Galli
, and
T. F.
Krauss
,
Nat. Nanotechnol.
9
,
19
(
2014
).
5.
A. J.
Kenyon
,
Semicond. Sci. Technol.
20
,
R65
(
2005
).
6.
J.
Hoang
,
T. T.
Van
,
M.
Sawkar-Mathur
,
B.
Hoex
,
M. C. M.
Van de Sanden
,
W. M. M.
Kessels
,
R.
Ostroumov
,
K. L.
Wang
,
J. R.
Bargar
, and
J. P.
Chang
,
J. Appl. Phys.
101
,
123116
(
2007
).
7.
M.
Miritello
,
R.
Lo Savio
,
P.
Cardile
, and
F.
Priolo
,
Phys. Rev. B
81
,
041411
(
2010
).
8.
K.
Suh
,
J. H.
Shin
,
S.-J.
Seo
, and
B.-S.
Bae
,
Appl. Phys. Lett.
92
,
121910
(
2008
).
9.
R.
Fernández Gonzáleza
,
J. J.
Velázquez
,
V. D.
Rodríguez
,
F.
Rivera López
,
A.
Lukowiak
,
A.
Chiasera
,
M.
Ferrari
,
R. R.
Gonçalves
,
J.
Marrero Jereza
,
F.
Lahoz
, and
P.
Núñeza
,
RSC Adv.
6
,
15054
(
2016
).
10.
S.
Zheng
,
Y.
Zhou
,
D.
Yin
,
X.
Xu
,
Y.
Qi
, and
S.
Peng
,
J. Alloys Compd.
566
,
90
(
2013
).
11.
C.
Strohhöfer
and
A.
Polman
,
Opt. Mater.
21
,
705
(
2003
).
12.
N.
Daldosso
and
L.
Pavesi
,
Laser Photonics Rev.
3
,
508
(
2009
).
13.
W. J.
Miniscalco
,
J. Lightwave Technol.
9
,
234
(
1991
).
14.
L. J.
Charbonniére
and
N.
Hildebrandt
,
Eur. J. Inorg. Chem.
2008
,
3241
.
15.
X.
Wu
,
Y.
Liang
,
R.
Chen
,
M.
Liu
, and
Y.
Li
,
J. Mater. Sci.
46
,
5581
(
2011
).
16.
M. N.
Huang
,
Y. Y.
Ma
,
X. Y.
Huang
,
S.
Ye
, and
Q. Y.
Zhang
,
Spectrochim. Acta Part A
115
,
767
(
2013
).
17.
X. Y.
Huang
,
X. H.
Ji
, and
Q. Y.
Zhang
,
J. Am. Ceram. Soc.
94
,
833
(
2011
).
18.
H.-T.
Sun
,
T.
Hasegawa
,
M.
Fujii
,
F.
Shimaoka
,
Z.
Bai
,
M.
Mizuhata
,
S.
Hayashi
, and
S.
Deki
,
Appl. Phys. Lett.
94
,
141106
(
2009
).
19.
M.
Peng
,
N.
Zhang
,
L.
Wondraczek
,
J.
Qiu
,
Z.
Yang
, and
Q.
Zhang
,
Opt. Express
19
,
20799
(
2011
).
20.
J.
Zheng
,
Y. H.
Zuo
,
L. Z.
Zhang
,
W.
Wang
,
C. L.
Xue
,
B. W.
Cheng
,
J. Z.
Yu
,
H. Q.
Guo
, and
Q. M.
Wang
,
J. Lumin.
130
,
1760
1763
(
2010
).
21.
A.
Scarangella
,
M.
Miritello
, and
F.
Priolo
,
J. Appl. Phys.
116
,
123511
(
2014
).
22.
A.
Scarangella
,
R.
Reitano
,
G.
Franzò
,
F.
Priolo
, and
M.
Miritello
,
Appl. Phys. Lett.
107
,
041908
(
2015
).
23.
C.
Angelov
,
J.
Faure
,
M.
Kalitzova
,
S.
Simov
,
T.
Tzvetkova
, and
A.
Djakov
,
Vacuum
51
,
285
(
1998
).
24.
S.
Zhou
,
N.
Jiang
,
B.
Zhu
,
H.
Yang
,
S.
Ye
,
G.
Lakshminarayana
,
J.
Hao
, and
J.
Qiu
,
Adv. Funct. Mater.
18
,
1407
(
2008
).
25.
J.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
268
,
1818
(
2010
).
26.
M.
Miritello
,
R.
Lo Savio
,
F.
Iacona
,
G.
Franzò
,
A.
Irrera
,
A. M.
Piro
,
C.
Bongiorno
, and
F.
Priolo
,
Adv. Mater.
19
,
1582
(
2007
).
27.
U.
Kolitsch
,
V.
Ijevskii
,
H. J.
Seifert
,
I.
Wiedmann
, and
F.
Aldinger
,
J. Mater. Sci.
32
,
6135
(
1997
).
28.
N.
Ikarashi
and
K.
Manabe
,
J. Appl. Phys.
94
,
480
(
2003
).
29.
G.
Lucovsky
,
Y.
Zhang
,
G. B.
Rayner
, Jr.
,
G.
Appel
,
H.
Ade
, and
J. L.
Whitten
,
J. Vac. Sci. Technol. B
20
,
1739
(
2002
).
30.
M.
Miritello
,
R.
Lo Savio
,
A. M.
Piro
,
G.
Franzò
, and
F.
Priolo
,
J. Appl. Phys.
100
,
013502
(
2006
).
31.
S.
Lozano-Perez
,
V.
de Castro Bernal
, and
R. J.
Nicholls
,
Ultramicroscopy
109
,
1217
(
2009
).
32.
N.
Jiang
,
D.
Sua
,
J. C. H.
Spence
,
S.
Zhou
, and
J.
Qiu
,
Solid State Commun.
149
,
111
(
2009
).
33.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
, 3rd ed. (
Springer
,
2011
).
34.
T. N.
Taylor
,
C. T.
Campbell
,
J. W.
Rogers
,
W. P.
Ellis
, and
J. M.
White
,
Surf. Sci.
134
,
529
546
(
1983
).
35.
W.
Xiong
,
Y.
Zhou
,
F.
Guo
,
L.
Chen
,
C.
Luo
, and
H.
Yuan
,
J. Cryst. Growth
377
,
160
(
2013
).
36.
H.
Jiang
,
X.
Wang
,
G.
Hao
, and
L.
Wang
,
J. Mater. Sci.: Mater. Electron.
24
,
814
(
2013
).
37.
F.
Yiting
,
F.
Shift
,
S.
Renying
, and
M.
Ishii
,
Prog. Cryst. Growth Charact. Mater.
40
,
183
(
2000
).
38.
M. B.
Camargo
,
L.
Gomes
, and
S. P.
Morato
,
Opt. Mater.
4
,
597
(
1995
).
39.
H.-T.
Sun
,
A.
Hosokawa
,
Y.
Miwa
,
F.
Shimaoka
,
M.
Fujii
,
M.
Mizuhata
,
S.
Hayashi
, and
S.
Deki
,
Adv. Mater.
21
,
3694
(
2009
).
40.
M.
Wojdak
,
M.
Klik
,
M.
Forcales
,
O. B.
Gusev
,
T.
Gregorkiewicz
,
D.
Pacifici
,
G.
Franzò
, and
F.
Priolo
,
Phys. Rev. B
69
,
233315
(
2004
).
You do not currently have access to this content.