Compact electret energy harvesters, based on a design recently introduced, are presented. Using electret surface potentials in the 400 V regime and a seismic mass of 10 g, it was possible to generate output power up to 0.6 mW at 36 Hz for an input acceleration of 1 g. Following the presentation of an analytical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical predictions. Finally, the performance of the electret harvesters is assessed using a figure of merit.
References
1.
P. D.
Mitcheson
, E. M.
Yeatman
, G. K.
Rao
, A. S.
Holmes
, and T. C.
Green
, Proc. IEEE
96
, 1457
(2008
).2.
E.
Elvin
and A.
Erturk
, Advances in Energy Harvesting Methods
(Springer
, New York
, 2013
).3.
S. R.
Anton
and K. M.
Farinholt
, Proc. SPIE
8341
, 83410G
(2012
).4.
S. R.
Anton
, K. M.
Farinholt
, and A.
Erturk
, J. Int. Mater. Syst. Struct.
25
, 1681
(2014
).5.
P.
Pondrom
, J.
Hillenbrand
, G. M.
Sessler
, J.
Bös
, and T.
Melz
, Appl. Phys. Lett.
104
, 172901
(2014
).6.
P.
Pondrom
, J.
Hillenbrand
, G. M.
Sessler
, J.
Bös
, and T.
Melz
, IEEE Trans. Dielectr. Electr. Insul.
22
, 1470
(2015
).7.
X.
Zhang
, L.
Wu
, and G. M.
Sessler
, AIP Adv.
5
, 077185
(2015
).8.
Y.
Suzuki
, IEEJ Trans. Elec. Electron. Eng.
6
, 101
(2011
).9.
S.
Boisseau
, G.
Despesse
, and A.
Sylvestre
, Smart Mater. Struct.
19
, 075015
(2010
).10.
J.
Hillenbrand
, P.
Pondrom
, and G. M.
Sessler
, Appl. Phys. Lett.
106
, 183902
(2015
).11.
S.
Roundy
, P. K.
Wright
, and J.
Rabaey
, Comput. Commun.
26
, 1131
(2003
).12.
S. P.
Beeby
, M. J.
Tudor
, and N. M.
White
, Meas. Sci. Technol.
17
, R175
(2006
).13.
O. D.
Jefimenko
and D. K.
Walker
, IEEE Trans. Ind. Appl.
IA-14
, 537
(1978
).14.
F.
Peano
and T.
Tambosso
, J. Microelectromech. Syst.
14
, 429
(2005
).15.
H.-W.
Lo
and Y.-C.
Tai
, J. Micromech. Microeng.
18
, 104006
(2008
).16.
Y.
Naruse
, N.
Matsubara
, K.
Mabuchi
, M.
Izumi
, and S.
Suzuki
, J. Micromech. Microeng.
19
, 094002
(2009
).17.
Y.
Suzuki
, D.
Miki
, M.
Edamoto
, and M.
Honzumi
, J. Micromech. Microeng.
20
, 104002
(2010
).18.
U.
Bartsch
, J.
Gaspar
, and O.
Paul
, J. Micromech. Microeng.
20
, 035016
(2010
).19.
T.
Masaki
, K.
Sakurai
, T.
Yokoyama
, M.
Ikuta
, H.
Sameshima
, M.
Doi
, T.
Seki
, and M.
Oba
, J. Micromech. Microeng.
21
, 104004
(2011
).20.
S.
Boisseau
, G.
Despesse
, T.
Ricart
, E.
Defay
, and A.
Sylvestre
, Smart Mater. Struct.
20
, 105013
(2011
).21.
Y.
Chiu
and Y.-C.
Lee
, J. Micromech. Microeng.
23
, 015012
(2013
).22.
T.
Takahashi
, M.
Suzuki
, T.
Nishida
, Y.
Yoshikawa
, and S.
Aoyagi
, in Proceedings of the MEMS
(2015
), p. 1145
.23.
Q.
Fu
and Y.
Suzuki
, in Proceedings of the Conference Solid-State Sensors Actuators Microsystems
(2015
), p. 1925
.24.
C.
Jean-Mistral
, T.
Vu-Cong
, and A.
Sylvestre
, Smart Mater. Struct.
22
, 104017
(2013
).25.
D.
Peter
, R.
Pichler
, S.
Bauer
, and R.
Schwödiauer
, Extreme Mech. Lett.
4
, 38
(2015
).26.
See supplementary material at http://dx.doi.org/10.1063/1.4960480 for detailed description of the experimental setup and discussion of backward electromechanical coupling and maximum power.
27.
J.
Hillenbrand
, G. M.
Sessler
, and X.
Zhang
, J. Appl. Phys.
98
, 064105
(2005
).28.
X.
Zhang
, G. M.
Sessler
, and Y.
Wang
, J. Appl. Phys.
116
, 074109
(2014
).29.
J.
Hillenbrand
, S.
Haberzettl
, T.
Motz
, and G. M.
Sessler
, J. Acoust. Soc. Am.
129
, 3682
(2011
).30.
J.
Hillenbrand
, T.
Motz
, and G. M.
Sessler
, IEEE Sens. J.
14
, 1770
(2014
).31.
A.
Erturk
and D. J.
Inman
, Smart Mater. Struct.
17
, 065016
(2008
).32.
33.
X.
Zhang
, P.
Pondrom
, L.
Wu
, and G. M.
Sessler
, Appl. Phys. Lett.
108
, 193903
(2016
).34.
K.
Ashraf
, M. H.
Khir
, J. O.
Dennis
, and Z.
Baharudin
, Sens. Actuators A
195
, 123
(2013
).35.
D. F.
Berdy
, P.
Srisungsitthisunti
, B.
Jung
, X.
Xu
, J. F.
Rhoads
, and D.
Peroulis
, IEEE Trans. UFFC
59
, 846
(2012
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.