We present the Raman spectral evidence of pressure-induced intercalation of solid hydrogen into graphite to 60 GPa. The intercalation is evident by the emergence of two characteristic Raman bands of hydrogen (νo1 and νo2), which appear upon the solidification of hydrogen and disappear as all sp2-hybridized graphitic carbons convert to sp3-hybridized hexagonal diamond at 57 GPa. The νo1 and νo2 frequencies of intercalated hydrogen, 4250 and 4270 cm−1 at 10 GPa, are substantially higher than the νo of bulk hydrogen, 4228 cm−1 at the same pressure, indicating the presence of strong repulsive interactions between intercalated hydrogen molecules and graphite layers and, thereby, strong internal chemical pressures. Based on the spectral blue shift of intercalated hydrogen vibrons, we estimate the internal pressure to be ∼1 GPa at 10 GPa and ∼10 GPa at 50 GPa.

1.
L.
Schlapbach
and
A.
Züttel
,
Nature
414
,
353
(
2001
).
2.
R.
Krishna
,
E.
Titus
,
M.
Salimian
,
O.
Okhay
,
S.
Rajendran
,
A.
Rajkumar
,
J. M. G.
Sousa
,
A. L. C.
Ferreira
,
J. C.
Gil
, and
J.
Gracio
, see http://www.intechopen.com/books/hydrogen-storage/hydrogen-storage-for-energy-application for
Hydrogen Storage for Energy Application, Hydrogen Storage
, edited by
J.
Liu
(
InTech
,
2012
).
3.
J.
Liu
and
W.
Zhang
, see http://www.intechopen.com/books/hydrogen-storage/improvement-on-hydrogen-storage-properties-of-complex-metal-hydride for
Improvement on Hydrogen Storage Properties of Complex Metal Hydride, Hydrogen Storage
, edited bu
J.
Liu
(
InTech
,
2012
).
4.
G. E.
Froudakis
,
Mater. Today
14
,
324
(
2011
).
5.
M.
Watanabe
,
M.
Tachikawa
, and
T.
Osaka
,
Electrochim. Acta
42
,
2707
(
1997
).
7.
A. F.
Ismail
,
K. C.
Khulbe
, and
T.
Matsuura
,
Gas Separation Membranes: Polymeric and Inorganic
(
Springer
,
2015
), p.
14
.
8.
D. W.
Breck
,
Zeolite Molecular Sieves: Structure, Chemistry, and Use
(
John Wiley & Sons
,
New York
,
1974
), p.
636
.
9.
M.
Mantina
,
A. C.
Chamberlin
,
R.
Valero
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
113
,
5806
(
2009
).
10.
G. M.
Borstad
and
C.-S.
Yoo
,
J. Chem. Phys.
135
,
174508
(
2011
).
11.
D.
Guerard
and
A.
Herold
,
Carbon
13
,
337
(
1975
).
12.
I. T.
Belash
,
A. D.
Bronnikov
,
O. V.
Zharikov
, and
A. V.
Palnichenko
,
Solid State Commun.
64
,
1445
(
1987
).
13.
N. B.
Hannay
,
T. H.
Geballe
,
B. T.
Matthias
,
K.
Andres
,
P.
Schmidt
, and
D.
MacNair
,
Phys. Rev. Lett.
14
,
225
(
1965
).
14.
N.
Emery
,
C.
Hèrold
, and
P.
Lagrange
,
J. Solid State Chem.
178
,
2947
(
2005
).
15.
P.
Loubeyre
,
R.
LeToullec
,
D.
Hausermann
,
M.
Hanfland
,
R. J.
Hemley
,
H. K.
Mao
, and
L. W.
Finger
,
Nature
383
,
702
(
1996
).
16.
M.
Hanfland
,
H.
Beister
, and
K.
Syassen
,
Phys. Rev. B
39
,
12598
(
1989
).
17.
Y. X.
Zhao
and
I. L.
Spain
,
Phys. Rev. B
40
,
993
(
1989
).
18.
W.
Utsumi
and
T.
Yagi
,
Science
252
,
1542
(
1991
).
19.
T.
Yagi
,
W.
Utsumi
,
M.
Yamakata
,
T.
Kikegawa
, and
O.
Shimomura
,
Phys. Rev. B
46
,
6031
(
1992
).
20.
J. R.
Patterson
,
A.
Kudryavtsev
, and
Y. K.
Vohra
,
Appl. Phys. Lett.
81
,
2073
(
2002
).
21.
H.
Mao
and
R.
Hemley
,
Rev. Mod. Phys.
66
,
671
(
1994
).
22.
R. T.
Howie
,
P.
Dalladay-Simpson
, and
E.
Gregoryanz
,
Nat. Mater.
14
,
495
(
2015
).
23.
A.
Cunsolo
,
G.
Pratesi
,
D.
Colognesi
,
R.
Verbeni
,
M.
Sampoli
,
F.
Sette
,
G.
Ruocco
,
R.
Senesi
,
M. H.
Krisch
, and
M.
Nardone
,
J. Low Temp. Phys.
129
,
117
(
2002
).
24.
R. T.
Howie
,
C. L.
Guillaume
,
T.
Scheler
,
A. F.
Goncharov
, and
E.
Gregoryanz
,
Phys. Rev. Lett.
108
,
125501
(
2012
).
25.
M.
Somayazulu
,
P.
Dera
,
A. F.
Goncharov
,
S. A.
Gramsch
,
P.
Liermann
,
W.
Yang
,
Z.
Liu
,
H.
Mao
, and
R. J.
Hemley
,
Nat. Chem.
2
,
50
(
2010
).
26.
A. K.
Kleppe
,
M.
Amboage
, and
A. P.
Jephcoat
,
Sci. Rep.
4
,
4989
(
2014
).
27.
M.
Kim
and
C.-S.
Yoo
,
J. Chem. Phys.
134
,
044519
(
2011
).
28.
A.
Nakayama
,
S.
Iijima
,
Y.
Koga
,
K.
Shimizu
,
K.
Hirahara
, and
F.
Kokai
,
Appl. Phys. Lett.
84
,
5112
(
2004
).
29.
H. K.
Mao
,
A. P.
Jephcoat
,
R. J.
Hemley
,
L. W.
Finger
,
C. S.
Zha
,
R. M.
Hazen
, and
D. E.
Cox
,
Science
239
,
1131
(
1988
).
30.
R.
Hagiwara
,
M.
Ito
, and
Y.
Ito
,
Carbon
34
,
1591
(
1996
).
31.
J.
Nagamatsu
,
N.
Nakagawa
,
T.
Muranaka
,
Y.
Zenitani
, and
J.
Akimitsu
,
Nature
410
,
63
(
2001
).
32.
E. W.
Wong
,
P. E.
Sheehan
, and
C. M.
Lieber
,
Science
277
,
1971
(
1997
).
33.
S.
Xie
,
W.
Li
,
Z.
Pan
,
B.
Chang
, and
L.
Sun
,
J. Phys. Chem. Solids
61
,
1153
(
2000
).
34.
T.
Zhang
,
K.
Xi
,
X.
Yu
,
M.
Gu
,
S.
Guo
,
B.
Gu
, and
H.
Wang
,
Polymer
44
,
2647
(
2003
).
35.
T. E.
Weller
,
M.
Ellerby
,
S. S.
Saxena
,
R. P.
Smith
, and
N. T.
Skipper
,
Nat. Phys.
1
,
39
(
2005
).
You do not currently have access to this content.