An acoustic diode (AD) is proposed and designed based on a mechanism different from the previous designs by using two structured impedance-matched acoustic metasurfaces. This AD can realize unidirectional acoustic transmission within a broad band with high transmission efficiency due to the impedance-matching condition while allowing other entities such as objects or fluids to pass freely. What is more, the backtracking waves that come from the incoming waves can be efficiently prevented and cannot disturb the source. The acoustic pressure field distribution, intensity distribution, and transmission efficiency are calculated by using the finite element method. The simulation results agree well with the theoretical predictions. Our proposed mechanism can experimentally provide a simple approach to design an AD and have potential applications in various fields such as medical ultrasound and noise insulation.

1.
G. G.
Malliaras
,
J. R.
Salem
,
P. J.
Brock
, and
C.
Scott
,
Phys. Rev. B
58
,
R13411
(
1998
).
2.
H.
Jia
,
M.
Ke
,
C.
Li
,
C.
Qiu
, and
Z.
Liu
,
Appl. Phys. Lett.
102
,
153508
(
2013
).
3.
J. J.
Chen
,
X.
Han
, and
G. Y.
Li
,
J. Appl. Phys.
113
,
184506
(
2013
).
4.
R.
Riedlinger
, U.S. patent 4618796 (21 October
1986
).
5.
B.
Liang
,
B.
Yuan
, and
J. C.
Cheng
,
Phys. Rev. Lett.
103
,
104301
(
2009
).
6.
B.
Liang
,
X. S.
Guo
,
J.
Tu
,
D.
Zhang
, and
J. C.
Cheng
,
Nat. Mater.
9
,
989
(
2010
).
7.
Z. J.
He
,
S. S.
Peng
,
Y. T.
Ye
,
Z. W.
Dai
,
C. Y.
Qiu
,
M. Z.
Ke
, and
Z. Y.
Liu
,
Appl. Phys. Lett.
98
,
083505
(
2011
).
8.
Y.
Li
,
J.
Tu
,
B.
Liang
,
X. S.
Guo
,
D.
Zhang
, and
J. C.
Cheng
,
J. Appl. Phys.
112
,
064504
(
2012
).
9.
X. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
,
J. Appl. Phys.
108
,
124909
(
2010
).
10.
X. F.
Li
,
X.
Ni
,
L.
Feng
,
M. H.
Lu
,
C.
He
, and
Y. F.
Chen
,
Phys. Rev. Lett.
106
,
084301
(
2011
).
11.
B.
Yuan
,
B.
Liang
,
J. C.
Tao
,
X. Y.
Zou
, and
J. C.
Cheng
,
Appl. Phys. Lett.
101
,
043503
(
2012
).
12.
A.
Cicek
,
O. A.
Kaya
, and
B.
Ulug
,
Appl. Phys. Lett.
100
,
111905
(
2012
).
13.
S.
Xu
,
C.
Qiu
, and
Z.
Liu
,
J. Appl. Phys.
111
,
094505
(
2012
).
14.
R. Q.
Li
,
B.
Liang
,
Y.
Li
,
W. W.
Kan
,
X. Y.
Zou
, and
J. C.
Cheng
,
Appl. Phys. Lett.
101
,
263502
(
2012
).
15.
B. I.
Popa
and
S. A.
Cummer
,
Nat. Commun.
5
,
3398
(
2014
).
16.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
,
Science
343
,
516
(
2014
).
17.
X.
Ni
,
C.
He
,
X. C.
Sun
,
X. P.
Liu
,
M. H.
Lu
,
L.
Feng
, and
Y. F.
Chen
,
New J. Phys.
17
,
053016
(
2015
).
18.
Y. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
,
Appl. Phys. Lett.
106
,
173508
(
2015
).
19.
Y. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
,
Appl. Phys. Lett.
107
,
113501
(
2015
).
20.
J.
Mei
and
Y.
Wu
,
New J. Phys.
16
,
123007
(
2014
).
21.
A.
Climente
,
D.
Torrent
, and
J.
Sánchez-Dehesa
,
Appl. Phys. Lett.
100
,
144103
(
2012
).
22.
Y. J.
Liang
,
L. W.
Chen
,
C. C.
Wang
, and
I. L.
Chang
,
J. Appl. Phys.
115
,
244513
(
2014
).
23.
V.
Leroy
,
A.
Strybulevych
,
M.
Lanoy
,
F.
Lemoult
,
A.
Tourin
, and
J. H.
Page
,
Phys. Rev. B
91
,
020301
(
2015
).
You do not currently have access to this content.