We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

1.
L. V.
King
,
Proc. R. Soc. London, A
147
,
212
(
1934
).
2.
L. P.
Gor'kov
,
Sov. Phys.-Dokl.
6
,
773
(
1962
).
5.
V.
Vandaele
,
P.
Lambert
, and
A.
Delchambre
,
Precis. Eng.
29
,
491
(
2005
).
6.
D.
Foresti
,
M.
Nabavi
,
M.
Klingauf
,
A.
Ferrari
, and
D.
Poulikakos
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
12549
(
2013
).
7.
T.
Hoshi
,
Y.
Oachi
, and
J.
Rekimoto
,
Jpn. J. Appl. Phys.
53
,
07KE07
(
2014
).
8.
W. J.
Xie
and
B.
Wei
,
Appl. Phys. Lett.
79
,
881
(
2001
).
9.
C. R.
Field
and
A.
Scheeline
,
Rev. Sci. Instrum.
78
,
125102
(
2007
).
10.
M. A. B.
Andrade
,
F.
Buiochi
, and
J. C.
Adamowski
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
469
(
2010
).
11.
M. A. B.
Andrade
,
N.
Pérez
, and
J. C.
Adamowski
,
Appl. Phys. Lett.
106
,
014101
(
2015
).
12.
C. A.
Rey
,
U. S. patent 4,284,403
(18 August
1981
).
13.
W. J.
Xie
,
C. D.
Cao
,
Y. J.
, and
B.
Wei
,
Phys. Rev. Lett.
89
,
104304
(
2002
).
14.
S.
Ueha
,
Y.
Hashimoto
, and
Y.
Koike
,
Ultrasonic
38
,
26
(
2000
).
15.
C.
Chen
,
J.
Wang
,
B.
Jia
, and
F.
Li
,
J. Intell. Mater. Syst. Struct.
25
,
755
(
2014
).
16.
S.
Zhao
,
S.
Mojrzisch
, and
J.
Wallaschek
,
Mech. Syst. Signal Proc.
36
,
168
(
2013
).
17.
J.
Lee
,
S. Y.
Teh
,
A.
Lee
,
H. H.
Kim
,
C.
Lee
, and
K. K.
Shung
,
Appl. Phys. Lett.
95
,
073701
(
2009
).
18.
G. T.
Silva
and
A. L.
Baggio
,
Ultrasonic
56
,
449
(
2015
).
19.
D.
Baresch
,
J. L.
Thomas
, and
R.
Marchiano
,
Phys. Rev. Lett.
116
,
024301
(
2016
).
20.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
,
Nat. Commun.
6
,
8661
(
2015
).
21.
S.
Zhao
and
J.
Wallaschek
,
Arch. Appl. Mech.
81
,
123
(
2011
).
22.
W. J.
Xie
and
B.
Wei
,
Phys. Rev. E
66
,
026605
(
2002
).
23.
M. A. B.
Andrade
,
T. S.
Ramos
,
F. T. A.
Okina
, and
J. C.
Adamowski
,
Rev. Sci. Instrum.
85
,
045125
(
2014
).
24.
E. H.
Trinh
and
J. L.
Robey
,
Phys. Fluids
6
,
3567
(
1994
).
25.
C. A.
Rey
,
D. R.
Merkley
,
G. R.
Hammarlund
, and
T. J.
Danley
,
Metall. Mater. Trans. A
19
,
2619
(
1988
).
26.
J. W.
Patten
,
J. Vac. Sci. Technol.
14
,
1289
(
1977
).
27.
W. K.
Rhim
,
S. K.
Chung
,
D.
Barber
,
K. F.
Man
,
G.
Gutt
,
A.
Rulison
, and
R. E.
Spjut
,
Rev. Sci. Instrum.
64
,
2961
(
1993
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4959862 for details about the maximum sphere size and suggested extension for the levitation concept.

Supplementary Material

You do not currently have access to this content.