ZnO nanowires/Cu4Bi4S9 (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V2O5 can efficiently accelerate the charge extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.

1.
A. D.
Rao
,
S.
Karalatti
,
T.
Thomas
, and
P. C.
Ramamurthy
,
ACS Appl. Mater. Interfaces
6
,
16792
(
2014
).
2.
Y. M.
Tang
,
P.
Traveerungroj
,
H. L.
Tan
,
P.
Wang
,
R.
Amal
, and
Y. H.
Ng
,
J. Mater. Chem. A
3
,
19582
(
2015
).
3.
B.
Kilic
,
H.
Telli
,
S.
Tuzemen
,
A.
Basaran
, and
G.
Pirge
,
J. Appl. Phys.
117
,
135704
(
2015
).
4.
J. P.
Deng
,
M. Q.
Wang
,
Z.
Yang
,
J.
Liu
,
Z. W.
Sun
, and
X. H.
Song
,
J. Power Sources
280
,
555
(
2015
).
5.
Y.
Song
,
X. H.
Zhang
,
X. Q.
Yan
,
Q. L.
Liao
,
Z. Z.
Wang
, and
Y.
Zhang
,
Appl. Phys. Lett.
105
,
213703
(
2014
).
6.
K.
Zhao
,
X. Q.
Yan
,
Y. S.
Gu
,
Z.
Kang
,
Z. M.
Bai
,
S. Y.
Cao
,
Y. C.
Liu
,
X. H.
Zhang
, and
Y.
Zhang
,
Small
12
,
245
(
2016
).
7.
H. Q.
Liu
,
R. F.
Peng
,
S.
Chu
, and
S. J.
Chu
,
Appl. Phys. Lett.
105
,
043507
(
2014
).
8.
T.
Zhai
,
L.
Li
,
Y.
Ma
,
M.
Liao
,
X.
Wang
,
X.
Fang
,
J.
Yao
,
Y.
Bando
, and
D.
Golberg
,
Chem. Soc. Rev.
40
,
2986
(
2011
).
9.
J.
Li
,
H. Z.
Zhong
,
H. J.
Liu
,
T. Y.
Zhai
,
X.
Wang
,
M. Y.
Liao
,
Y.
Bando
,
R. B.
Liu
, and
B. S.
Zou
,
J. Mater. Chem.
22
,
17813
(
2012
).
10.
H. X.
Li
,
Q. L.
Zhang
,
A. L.
Pan
,
Y. G.
Wang
,
B. S.
Zou
, and
H. J.
Fan
,
Chem. Mater.
23
,
1299
(
2011
).
11.
X. Y.
Liu
,
H. W.
Zheng
,
J. W.
Zhang
,
Y.
Xiao
, and
Z. Y.
Wang
,
J. Mater. Chem. A
1
,
10703
(
2013
).
12.
A. K.
Geim
,
Science
324
,
1530
(
2009
).
13.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
14.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
15.
S.
Guo
and
S.
Dong
,
Chem. Soc. Rev.
40
,
2644
(
2011
).
16.
Y.
Sun
,
Q.
Wu
, and
G.
Shi
,
Energy Environ. Sci.
4
,
1113
(
2011
).
17.
J.
Zhu
,
D.
Yang
,
Z.
Yin
,
Q.
Yan
, and
H.
Zhang
,
Small
10
,
3480
(
2014
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4960157 for the schematic diagram of TPV, SPVs and photoelectric conversion efficiencies to changing thickness, as well as the equivalent circuits of fitting EIS data.
19.
T.
Dittrich
,
I.
Mora-Sero
,
G.
Garcia-Belmonte
, and
J.
Bisqueri
,
Phys. Rev. B
73
,
045407
(
2006
).
20.
S.
Pang
,
T. F.
Xie
,
Y.
Zhang
,
X.
Wei
,
M.
Yang
, and
D. J.
Wang
,
J. Phys. Chem. C
111
,
18417
(
2007
).
21.
Y.
Zhang
,
L. L.
Wang
,
B. K.
Liu
,
J. L.
Zhai
,
H. M.
Fan
,
D. J.
Wang
,
Y. H.
Lin
, and
T. F.
Xie
,
Electrochim. Acta
56
,
6517
(
2011
).
22.
X. B.
Xu
,
Z. H.
Liu
,
Z. X.
Zuo
,
M.
Zhang
,
Z. X.
Zhao
,
Y.
Shen
,
H. P.
Zhou
,
Q.
Chen
,
Y.
Yang
, and
M. K.
Wang
,
Nano Lett.
15
,
2402
(
2015
).
23.
A.
Dualeh
,
T.
Moehl
,
N.
Tétreault
,
J.
Teucher
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Graützel
,
ACS Nano
8
,
362
(
2014
).
24.
H.-S.
Kim
,
I.
Mora-Sero
,
V.
Gonzalez-Pedro
,
F.
Fabregat-Santiago
,
E. J.
Juarez-Perez
,
N.-G.
Park
, and
J.
Bisquert
,
Nat. Commun.
4
,
2242
(
2013
).
25.
V.
Gonzalez-Pedro
,
E.
Juarez-Perez
,
W.-S.
Arsyad
,
E.
Barea
,
F.
Fabregat-Santiago
,
I.
More-Sero
, and
J.
Bisquert
,
Nano Lett.
14
,
888
(
2014
).
26.
K. C.
Wang
,
J. Y.
Jeng
,
P. S.
Shen
,
Y. C.
Chang
,
E. W. G.
Diau
,
C. H.
Tsai
,
T. Y.
Chao
,
H. C.
Hsu
,
P. Y.
Lin
,
P.
Chen
,
T. F.
Guo
, and
T. C.
Wen
,
Sci. Rep.
4
,
4756
(
2014
).
27.
J. Y.
Jeng
,
K. C.
Chen
,
T. Y.
Chiang
,
P. Y.
Lin
,
T. D.
Tsai
,
Y. C.
Chang
,
T. F.
Guo
,
P.
Chen
,
T. C.
Wen
, and
Y. J.
Hsu
,
Adv. Mater.
26
,
4107
(
2014
).
28.
E.
Edri
,
S.
Kirmayer
,
A.
Henning
,
S.
Mukhopadhyay
,
K.
Gartsman
,
Y.
Rosenwaks
,
G.
Hodes
, and
D.
Cahen
,
Nano Lett.
14
,
1000
(
2014
).
29.
M. K.
Wang
,
P.
Chen
,
R.
Humphry-Baker
,
S.
Zakeeruddin
, and
M.
Grätzel
,
ChemPhysChem
10
,
290
(
2009
).
30.
X. B.
Xu
,
K.
Cao
,
D. K.
Huang
,
Y.
Shen
, and
M. K.
Wang
,
J. Phys. Chem. C
116
,
25233
(
2012
).

Supplementary Material

You do not currently have access to this content.