The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level. We then examined how synapses develop on micropatterned hippocampal neurons. Three types of micropatterns with different numbers of short paths for dendrite growth were compared. A normal development in synapse density was observed when micropatterns with three or more short paths were used. Finally, we performed double patch clamp recordings on micropatterned neurons to confirm that these synapses are indeed functional, and that the neuronal signal is transmitted unidirectionally in the intended orientation. This work provides a practical guideline for patterning single neurons to design functional neuronal networks in vitro with the direction of signal propagation being controlled.

1.
B. C.
Wheeler
and
G. J.
Brewer
,
Proc. IEEE
98
,
398
(
2010
).
2.
M. J.
Aebersold
,
H.
Dermutz
,
C.
Forró
,
S.
Weydert
,
G.
Thompson-Steckel
,
J.
Vörös
, and
L.
Demkó
,
Trends Anal. Chem.
78
,
60
69
(
2016
).
3.
T. L.
Fletcher
,
P.
Cameron
,
P.
De Camilli
, and
G.
Banker
,
J. Neurosci.
11
,
1617
(
1991
).
4.
T. L.
Fletcher
,
P.
De Camilli
, and
G.
Banker
,
J. Neurosci.
14
,
6695
(
1994
).
5.
W.
Ma
,
Q.-Y.
Liu
,
D.
Jung
,
P.
Manos
,
J. J.
Pancrazio
,
A. E.
Schaffner
,
J. L.
Barker
, and
D. A.
Stenger
,
Dev. Brain Res.
111
,
231
(
1998
).
6.
C.
Wyart
,
C.
Ybert
,
L.
Bourdieu
,
C.
Herr
,
C.
Prinz
, and
D.
Chatenay
,
J. Neurosci. Methods
117
,
123
(
2002
).
7.
A. K.
Vogt
,
L.
Lauer
,
W.
Knoll
, and
A.
Offenhäusser
,
Biotechnol. Prog.
19
,
1562
(
2003
).
8.
A. K.
Vogt
,
G.
Wrobel
,
W.
Meyer
,
W.
Knoll
, and
A.
Offenhäusser
,
Biomaterials
26
,
2549
(
2005
).
9.
I.
Suzuki
and
K.
Yasuda
,
Jpn. J. Appl. Phys., Part 1
46
,
6398
(
2007
).
10.
H.
Kawano
,
S.
Katsurabayashi
,
Y.
Kakazu
,
Y.
Yamashita
,
N.
Kubo
,
M.
Kubo
,
H.
Okuda
,
K.
Takasaki
,
K.
Kubota
,
K.
Mishima
,
M.
Fujiwara
,
N. C.
Harata
, and
K.
Iwasaki
,
PLoS ONE
7
,
e48034
(
2012
).
11.
D.
Edwards
,
M.
Stancescu
,
P.
Molnar
, and
J. J.
Hickman
,
ACS Chem. Neurosci.
4
,
1174
(
2013
).
12.
O.
Feinerman
,
A.
Rotem
, and
E.
Moses
,
Nat. Phys.
4
,
967
(
2008
).
13.
M.
Shein Idelson
,
E.
Ben-Jacob
, and
Y.
Hanein
,
PLoS ONE
5
,
e14443
(
2010
).
14.
M. D.
Boehler
,
S. S.
Leondopulos
,
B. C.
Wheeler
, and
G. J.
Brewer
,
J. Neurosci. Methods
203
,
344
(
2012
).
15.
E.
Marconi
,
T.
Nieus
,
A.
Maccione
,
P.
Valente
,
A.
Simi
,
M.
Messa
,
S.
Dante
,
P.
Baldelli
,
L.
Berdondini
, and
F.
Benfenati
,
PLoS ONE
7
,
e34648
(
2012
).
16.
J.
Albers
,
K.
Toma
, and
A.
Offenäusser
,
Biotechnol. J.
10
,
332
(
2015
).
17.
D. A.
Stenger
,
J. J.
Hickman
,
K. E.
Bateman
,
M. S.
Ravenscroft
,
W.
Ma
,
J. J.
Pancrazio
,
K.
Shaffer
,
A. E.
Schaffner
,
D. H.
Cribbs
, and
C. W.
Cotman
,
J. Neurosci. Methods
82
,
167
(
1998
).
18.
R.
Fricke
,
P. D.
Zentis
,
L. T.
Rajappa
,
B.
Hofmann
,
M.
Banzet
,
A.
Offenhäusser
, and
S. H.
Meffert
,
Biomaterials
32
,
2070
(
2011
).
19.
H.
Yamamoto
,
T.
Demura
,
M.
Morita
,
G. A.
Banker
,
T.
Tanii
, and
S.
Nakamura
,
J. Neurochem.
123
,
904
(
2012
).
20.
D. M.
Johnson
,
J. P.
Abi-Mansour
, and
J. A.
Maurer
,
Integr. Biol.
4
,
1034
(
2012
).
21.
H.
Yamamoto
,
S.
Kono
,
T.
Kushida
,
A.
Hirano-Iwata
,
M.
Niwano
, and
T.
Tanii
, Neuroscience 2014, Washington DC, 15–19 November 2014, poster abstract 658.16/VV19.
22.
C. G.
Dotti
,
C. A.
Sullivan
, and
G. A.
Banker
,
J. Neurosci.
8
,
1454
(
1988
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4959836 for details on experimental methods and Fig. S1.
24.
W. R.
Kim
,
M. J.
Jang
,
S.
Joo
,
W.
Sun
, and
Y.
Nam
,
Lab Chip
14
,
799
(
2014
).
25.
W. P.
Bartlett
and
G. A.
Banker
,
J. Neurosci.
4
,
1954
(
1984
).
26.
N.
Ishizuka
,
J.
Weber
, and
D. G.
Amaral
,
J. Comput. Neurol.
295
,
580
(
1990
).
27.
R.
Re
,
A.
Zanetti
,
M.
Sironi
,
N.
Polentarutti
,
L.
Lanfrancone
,
E.
Dejana
, and
F.
Colotta
,
J. Cell Biol.
127
,
537
(
1994
).
28.
C. S.
Chen
,
M.
Mrksich
,
S.
Huang
,
G. M.
Whitesides
, and
D. E.
Ingber
,
Science
276
,
1425
(
1997
).
29.
F. G.
Giancotti
and
E.
Ruoslahti
,
Science
285
,
1028
(
1999
).
30.
H.
Yamamoto
,
K.
Okano
,
T.
Demura
,
Y.
Hosokawa
,
H.
Masuhara
,
T.
Tanii
, and
S.
Nakamura
,
Appl. Phys. Lett.
99
,
163701
(
2011
).
31.
H.
Dermutz
,
R. R.
Grüter
,
A. M.
Truong
,
L.
Demkó
,
J.
Vörös
, and
T.
Zambelli
,
Langmuir
30
,
7037
(
2014
).
32.
H.
Yamamoto
,
T.
Demura
,
M.
Morita
,
S.
Kono
,
K.
Sekine
,
T.
Shinada
,
S.
Nakamura
, and
T.
Tanii
,
Biofabrication
6
,
035021
(
2014
).
33.
J. D.
Pajerowski
,
K. N.
Dahl
,
F. L.
Zhong
,
P. J.
Sammak
, and
D. E.
Discher
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
15619
(
2007
).
34.
D. R.
Gossett
,
H. T. K.
Tse
,
S. A.
Lee
,
Y.
Ying
,
A. G.
Lindgren
,
O. O.
Yang
,
J.
Rao
,
A. T.
Clark
, and
D.
Di Carlo
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
7630
(
2012
).
35.
S.
Pagliara
,
K.
Franze
,
C. R.
McClain
,
G. W.
Wylde
,
C. L.
Fisher
,
R. J. M.
Franklin
,
A. J.
Kabla
,
U. F.
Keyser
, and
K. J.
Chalut
,
Nat. Mater.
13
,
638
(
2014
).
36.
O.
Otto
,
P.
Rosendahl
,
A.
Mietke
,
S.
Golfier
,
C.
Herold
,
D.
Klaue
,
S.
Girardo
,
S.
Pagliara
,
A.
Ekpenyong
,
A.
Jacobi
,
M.
Wobus
,
N.
Topfner
,
U. F.
Keyser
,
J.
Mansfeld
,
E.
Fischer-Friedrich
, and
J.
Guck
,
Nat. Methods
12
,
199
(
2015
).
37.
S. V.
Sharma
,
D. Y.
Lee
,
B.
Li
,
M. P.
Quinlan
,
F.
Takahashi
,
S.
Maheswaran
,
U.
McDermott
,
N.
Axixian
,
L.
Zou
,
M. A.
Fischbach
,
K.-K.
Wong
,
K.
Brandstetter
,
B.
Wittner
,
S.
Ramaswamy
,
M.
Classon
, and
J.
Settleman
,
Cell
141
,
69
(
2010
).
38.
K. R.
Love
,
S.
Bagh
,
J.
Choi
, and
J. C.
Love
,
Trends Biotechnol.
31
,
280
(
2013
).

Supplementary Material

You do not currently have access to this content.