We report the electronic and optical properties of Sn2S3 as obtained from first principles calculations with the modified Becke-Johnson potential. The electronic structure shows that Sn occurs in both divalent and tetravalent forms. The fundamental band gap of 0.82 eV is indirect. The direct gap is 0.97 eV, but the onset of strong optical absorption is much higher at ∼1.75 eV. This is as a consequence of the Sn2+s and Sn4+s characters of the valence and conduction band extrema, respectively. We also find strong and different anisotropies for conduction in p- and n-type Sn2S3. This should be taken into account in device structures in order to obtain efficient charge collection. The thermopowers are reasonably high for both p- and n-type materials. p-type Sn2S3 shows complex corrugated isosurface sections, while the n-type material shows multiple band extrema.

1.
M.
Cruz
,
J.
Morales
,
J. P.
Espinos
, and
J.
Sanz
,
J. Solid State Chem.
175
,
359
(
2003
).
2.
U.
Alpen
,
J.
Fenner
, and
E.
Gmelin
,
Mater. Res. Bull.
10
,
175
(
1975
).
3.
S.
Lopez
,
S.
Granados
, and
A.
Ortiz
,
Semicond. Sci. Technol.
11
,
433
(
1996
).
4.
L. A.
Burton
,
D.
Colobara
,
R. D.
Abellon
,
F. C.
Grozema
,
L. M.
Peter
,
T. J.
Savenije
,
G.
Dennler
, and
A.
Walsh
,
Chem. Mater.
25
,
4908
(
2013
).
5.
Y. H.
Peng
,
H. Q.
Zhou
,
X. H.
Liu
,
X. W.
He
,
D.
Zhao
,
K.
Hai
,
W. C.
Zhou
,
H. J.
Yuan
, and
D. S.
Tang
,
Acta Phys. Chim. Sin.
27
,
1249
(
2011
).
6.
J.
Lu
,
J.
Li
,
H.
Bai
, and
J.
Yang
,
Chin. J. Vac. Sci. Tech.
29
,
130
(
2009
).
7.
H.
Ben Haj Salah
,
H.
Bouzouita
, and
B.
Rezig
,
Thin Solid Films
480–481
,
439
(
2005
).
8.
M.
Khadraoui
,
N.
Benramdane
,
C.
Mathieu
,
A.
Bouzidi
,
R.
Miloua
,
Z.
Kebbab
,
K.
Sahraoui
, and
R.
Desfeux
,
Solid State Commun.
150
,
297
(
2010
).
9.
B.
Chen
,
X.
Xu
,
F.
Wang
,
J.
Liu
, and
J.
Ji
,
Mater. Lett.
65
,
400
(
2011
).
10.
A.
Sanchez-Juarez
and
A.
Ortiz
,
Semicond. Sci. Technol.
17
,
931
(
2002
).
11.
D. J.
Singh
and
L.
Nordstrom
,
Planewaves Pseudopotentials and the LAPW Method
, 2nd ed. (
Springer
,
Berlin
,
2006
).
12.
P.
Blaha
,
K.
Schwarz
,
G.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
,
WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
(
Vienna University of Technology
,
Austria
,
2001
).
13.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
14.
I. D.
Brown
and
D.
Altermatt
,
Acta Cryst.
B41
,
244
(
1985
).
15.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
).
16.
D.
Koller
,
F.
Tran
, and
P.
Blaha
,
Phys. Rev. B
83
,
195134
(
2011
).
17.
D. J.
Singh
,
Phys. Rev. B
82
,
205102
(
2010
).
18.
G. K. H.
Madsen
and
D. J.
Singh
,
Comput. Phys. Commun.
175
,
67
(
2006
).
19.
M. M.
Bletskan
and
D. I.
Bletskan
,
J. Optoelectron. Adv. Mater.
16
,
659
(
2014
).
20.
J. M.
Ziman
,
Principles of the Theory of Solids
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1972
).
21.
X.
Chen
,
D.
Parker
, and
D. J.
Singh
,
Sci. Rep.
3
,
3168
(
2013
).
22.
X.
Xing
,
J.
Sun
,
K. P.
Ong
,
X.
Fan
,
W.
Zheng
, and
D. J.
Singh
,
APL Materials
4
,
053201
(
2016
).
23.
N. A.
Mecholsky
,
L.
Resca
,
I. L.
Pegg
, and
M.
Fornari
,
Phys. Rev. B
89
,
155131
(
2014
).
24.
K. P.
Ong
,
D. J.
Singh
, and
P.
Wu
,
Phys. Rev. Lett.
104
,
176601
(
2010
).
You do not currently have access to this content.