Materials with negative stiffness, although inherently unstable in isolation, can be stabilized by external constraints, for example, by inclusion within a material with positive stiffness. We have identified ZrW2O8, a material with negative thermal expansion, as a candidate negative-stiffness material arising from its negative bulk modulus during a ferroelastic cubic–orthorhombic pressure-induced phase transition (PIPT). A hyperelastic constituent equation for this transition was developed and implemented in a finite-element model of ZrW2O8 inclusions in positive stiffness, positive thermal expansion matrices. In these matrices, thermal stress during cooling, originating from thermal expansion mismatch, would be sufficient to initiate the PIPT after small temperature drops. The subsequent progress of the PIPT depends strongly on the thermoelastic properties of the matrix, with stiff, low thermal expansion matrices stabilizing the transition state over broad temperature ranges, indicating that ZrW2O8 or materials with similar properties could be used as versatile negative-stiffness inclusion materials. The models were used to understand previous experiments on composites that include ZrW2O8.

1.
2.
W. J.
Drugan
,
Phys. Rev. Lett.
98
,
055502
(
2007
).
3.
Z. G.
Nicolau
and
A. E.
Motter
,
Nat. Mater.
11
,
608
(
2012
).
4.
H. W.
Yap
,
R. S.
Lakes
, and
R. W.
Carpick
,
Phys. Rev. B
77
,
045423
(
2008
).
5.
A. A.
Skandani
,
R.
Ctvrtlik
, and
M.
Al-Haik
,
Appl. Phys. Lett.
105
,
082906
(
2014
).
6.
R. S.
Lakes
,
T.
Lee
,
A.
Bersie
, and
Y. C.
Wang
,
Nature
410
,
565
(
2001
).
7.
T.
Jaglinski
,
D.
Kochmann
,
D.
Stone
, and
R. S.
Lakes
,
Science
315
,
620
(
2007
).
8.
A. V.
Dyskin
and
E.
Pasternak
,
Int. J. Eng. Sci.
58
,
45
(
2012
).
9.
Y. C.
Wang
and
R. S.
Lakes
,
J. Appl. Phys.
90
,
6458
(
2001
).
10.
Y. C.
Wang
and
R. S.
Lakes
,
Appl. Phys. Lett.
84
,
4451
(
2004
).
11.
N.
Nadkarni
,
C.
Daraio
, and
D. M.
Kochmann
,
Phys. Rev. E
90
,
023204
(
2014
).
12.
J. H.
Oh
,
H. M.
Seung
, and
Y. Y.
Kim
,
Appl. Phys. Lett.
108
,
093501
(
2016
).
13.
Z. Y.
Wei
,
Z. V.
Guo
,
L.
Dudte
,
H. Y.
Liang
, and
L.
Mahadevan
,
Phys. Rev. Lett.
110
,
215501
(
2013
).
14.
A. D.
Fortes
,
E.
Suard
, and
K. S.
Knight
,
Science
331
,
742
(
2011
).
15.
S. A.
Hodgson
,
J.
Adamson
,
S. J.
Hunt
,
M. J.
Cliffe
,
A. B.
Cairns
,
A. L.
Thompson
,
M. G.
Tucker
,
N. P.
Funnell
, and
A. L.
Goodwin
,
Chem. Commun.
50
,
5264
(
2014
).
16.
J.
Meaud
,
T.
Sain
,
B.
Yeom
,
S. J.
Park
,
A. B.
Shoultz
,
G.
Hulbert
,
Z. D.
Ma
,
N. A.
Kotov
,
A. J.
Hart
,
E. M.
Arruda
, and
A. M.
Waas
,
ACS Nano
8
,
3468
(
2014
).
17.
T. A.
Mary
,
J. S. O.
Evans
,
T.
Vogt
, and
A. W.
Sleight
,
Science
272
,
90
(
1996
).
18.
F.
Bridges
,
T.
Keiber
,
P.
Juhas
,
S. J. L.
Billinge
,
L.
Sutton
,
J.
Wilde
, and
G. R.
Kowach
,
Phys. Rev. Lett.
112
,
045505
(
2014
).
19.
J. S. O.
Evans
,
T. A.
Mary
,
T.
Vogt
,
M. A.
Subramanian
, and
A. W.
Sleight
,
Chem. Mater.
8
,
2809
(
1996
).
20.
K.
Wang
and
R. R.
Reeber
,
Appl. Phys. Lett.
76
,
2203
(
2000
).
21.
M. G.
Tucker
,
A. L.
Goodwin
,
M. T.
Dove
,
D. A.
Keen
,
S. A.
Wells
, and
J. S. O.
Evans
,
Phys. Rev. Lett
95
,
255501
(
2005
).
22.
C. P.
Romao
,
K. J.
Miller
,
C. A.
Whitman
,
M. A.
White
, and
B. A.
Marinkovic
, in
Comprehensive Inorganic Chemistry II
, edited by
J.
Reedijk
and
K.
Poeppelmeier
(
Elsevier
,
Oxford
,
2013
), Vol.
4
, pp.
128
151
.
23.
J. S. O.
Evans
,
Z.
Hu.
,
J. D.
Jorgensen
,
D. N.
Argyriou
,
S.
Short
, and
A. W.
Sleight
,
Science
275
,
61
(
1997
).
24.
L. C.
Gallington
,
K. W.
Chapman
,
C. R.
Morelock
,
P. J.
Chupas
, and
A. P.
Wilkinson
,
Phys. Chem. Chem. Phys.
15
,
19665
(
2013
).
25.
T.
Varga
,
A. P.
Wilkinson
,
C.
Lind
,
W. A.
Bassett
, and
C.-S.
Zha
,
Phys. Rev. B.
71
,
214106
(
2005
).
26.
B. K.
Greve
,
K. L.
Martin
,
P. L.
Lee
,
P. J.
Chupas
,
K. W.
Chapman
, and
A. P.
Wilkinson
,
J. Am. Chem. Soc.
132
,
15496
(
2010
).
27.
Y. H.
Hu
and
L.
Zhang
,
Phys. Rev. B
81
,
174103
(
2010
).
28.
C.
Lind
,
M. R.
Coleman
,
L. C.
Kozy
, and
G. R.
Sharma
,
Phys. Status Solidi B
248
,
123
(
2011
).
29.
H.
Holzer
and
D. C.
Dunand
,
J. Mater. Res.
14
,
780
(
1999
).
30.
C. P.
Romao
,
B. A.
Marinkovic
,
U.
Werner-Zwanziger
, and
M. A.
White
,
J. Am. Ceram. Soc.
98
,
2858
(
2015
).
31.
S.
Yilmaz
,
J. Phys.: Condens. Matter
14
,
365
(
2002
).
32.
X.
Li
,
L.
Fang
,
B.
Chen
, and
D.
He
,
Phys. B: Condens. Matter
487
,
37
(
2016
).
33.
R.
Abeyaratne
,
K.
Bhattacharya
, and
J. K.
Knowles
,
in Nonlinear Elasticity: Theory and Applications
, edited by
Y. B.
Fu
and
R. W.
Ogden
(
Cambridge University Press
,
Cambridge
,
2001
), pp.
433
490
.
34.
G. A.
Holzapfel
,
Nonlinear Solid Mechanics
(
Wiley
,
Hoboken
,
2000
).
35.
F. R.
Drymiotis
,
H.
Ledbetter
,
J. B.
Betts
,
T.
Kimura
,
J. C.
Lashley
,
A.
Migliori
,
A. P.
Ramirez
,
G. R.
Kowach
, and
J.
Van Duijn
,
Phys. Rev. Lett.
93
,
025502
(
2004
).
36.
O. C.
Zienkiewicz
and
R. L.
Taylor
,
The Finite Element Method for Solid and Structural Mechanics
(
Butterworth-Heinemann
,
Oxford
,
2013
).
37.
M. M.
Attard
,
Int. J. Solids Struct.
40
,
4353
(
2003
).
38.
L.
Sun
and
P.
Kwon
,
Mater. Sci. Eng. A
527
,
93
(
2009
).
39.
L.
Sun
,
A.
Sneller
, and
P.
Kwon
,
Compos. Sci. Technol.
68
,
3425
(
2008
).
40.
M.
Kofteros
,
S.
Rodriguez
,
V.
Tandon
, and
L. E.
Murr
,
Scr. Mater.
45
,
369
(
2001
).
41.
Y.
Wu
,
M.
Wang
,
Z.
Chen
,
N.
Ma
, and
H. W.
Wang
,
J. Mater. Sci
48
,
2928
(
2013
).
42.
W.
Xin
,
Z.
Jianfu
,
Z.
Yanghuan
,
Z.
Jinglin
,
L.
Fengshuang
, and
W.
Xinlin
,
Rare Met.
29
,
371
(
2010
).
43.
D. C.
Agrawal
and
R.
Raj
,
Acta Metall.
37
,
1265
(
1989
).
44.
I. A.
Ibrahim
,
F. A.
Mohamed
, and
E. J.
Lavernia
,
J. Mater. Sci.
26
,
1137
(
1991
).
45.
Z.
Hashin
and
S.
Shtrikman
,
J. Mech. Phys. Solids
11
,
127
(
1963
).
46.
R. E.
Barker
, Jr.
,
J. Appl. Phys.
34
,
107
(
1963
).
47.
M. B.
Jakubinek
,
C. A.
Whitman
, and
M. A.
White
,
J. Therm. Anal. Calorim.
99
,
165
(
2010
).
48.
S.
Yilmaz
and
D. C.
Dunand
,
Compos. Sci. Technol.
64
,
1895
(
2004
).

Supplementary Material

You do not currently have access to this content.