Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ∼200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

1.
A. G.
Cepni
, “
Experimental investigation of time-reversal techniques using electromagnetic waves
,” Ph.D. thesis (
Carnegie Mellon University
,
2005
).
2.
G.
Lerosey
,
J.
de Rosny
,
A.
Tourin
,
A.
Derode
,
G.
Montaldo
, and
M.
Fink
,
Phys. Rev. Lett.
92
,
193904
(
2004
).
3.
B. E.
Henty
and
D. D.
Stancil
,
Phys. Rev. Lett.
93
,
243904
(
2004
).
4.
M. J.
Chabalko
, “
Experimental investigation of time reversal with electromagnetic waves in the presence of random media
,” M.S. thesis (
Carnegie Mellon University
,
2008
).
5.
Y.
Jiang
,
J.-G.
Zhu
,
D. D.
Stancil
, and
M. J.
Chabalko
, in
2007 IEEE Antennas and Propagation Society International Symposium
(
2007
).
6.
G.
Lerosey
,
J.
de Rosny
,
A.
Tourin
, and
M.
Fink
,
Science
315
,
1120
(
2007
).
7.
M.
Fink
,
J.
de Rosny
,
G.
Lerosey
, and
A.
Tourin
,
Compt. Rendus Phys.
10
,
447
(
2009
).
8.
F.
Lemoult
,
G.
Lerosey
,
J.
de Rosny
, and
M.
Fink
,
Phys. Rev. Lett.
104
,
203901
(
2010
).
9.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Waves Random Complex Media
21
,
591
(
2011
).
10.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Waves Random Complex Media
21
,
614
(
2011
).
11.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Nat. Commun.
3
,
889
(
2012
).
12.
A.
Ourir
,
G.
Lerosey
,
F.
Lemoult
,
M.
Fink
, and
J.
de Rosny
,
Appl. Phys. Lett.
101
,
111102
(
2012
).
13.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
Phys. Rev. Lett.
107
,
64301
(
2011
).
14.
M. J.
Chabalko
,
W. C.
Harris
,
D. D.
Stancil
, and
D. S.
Ricketts
, in
2014 Asia-Pacific Microwave Conference
(
2014
), pp.
137
139
.
15.
M. J.
Chabalko
and
D. S.
Ricketts
,
Appl. Phys. Lett.
106
,
62401
(
2015
).
16.
E.
Shamonina
and
L.
Solymar
,
J. Phys. Appl. Phys.
37
,
362
(
2004
).
17.
R.
Syms
,
E.
Shamonia
, and
L.
Solymar
,
IEE Proc. Microwave Antennas Propag.
153
,
111
(
2006
).
18.
E.
Bou-Balust
,
R.
Sedwick
,
P.
Fisher
, and
E.
Alarcon
,
Wirel. Power Transfer
1
,
83
92
(
2016
).
19.
G.
Lipworth
,
J.
Ensworth
,
K.
Seetharam
,
D.
Huang
,
J. S.
Lee
,
P.
Schmalenberg
,
T.
Nomura
,
M. S.
Reynolds
,
D. R.
Smith
, and
Y.
Urzhumov
,
Sci. Rep.
4
,
3642
(
2014
).
20.
D.
Huang
,
Y.
Urzhumov
,
D. R.
Smith
,
K. H.
Teo
, and
J.
Zhang
,
J. Appl. Phys.
111
,
64902
(
2012
).
21.
B.
Wang
,
K. H.
Teo
,
T.
Nishino
,
W.
Yerazunis
,
J.
Barnwell
, and
J.
Zhang
,
Appl. Phys. Lett.
98
,
254101
(
2011
).
22.
A. P.
Sample
,
D. T.
Meyer
, and
J. R.
Smith
,
IEEE Trans. Ind. Electron.
58
,
544
(
2011
).
23.
T. C.
Yang
,
IEEE J. Oceanic Eng.
28
,
229
(
2003
).
You do not currently have access to this content.