We report the development of hybrid complementary inverters based on p-channel organic and n-channel metal oxide thin-film transistors (TFTs) both processed from solution at <200 °C. For the organic TFTs, a ternary blend consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, the polymer indacenodithiophene-benzothiadiazole (C16IDT-BT) and the p-type dopant C60F48 was employed, whereas the isotype In2O3/ZnO heterojunction was used for the n-channel TFTs. When integrated on the same substrate, p- and n-channel devices exhibited balanced carrier mobilities up to 10 cm2/Vs. Hybrid complementary inverters based on these devices show high signal gain (>30 V/V) and wide noise margins (70%). The moderate processing temperatures employed and the achieved level of device performance highlight the tremendous potential of the technology for application in the emerging sector of large-area microelectronics.

1.
D.
Kim
and
J. A.
Rogers
, “
Stretchable electronics: Materials strategies and devices
,”
Adv. Mater.
20
(
24
),
4887
4892
(
2008
).
2.
Y.
Sun
and
J. A.
Rogers
, “
Inorganic semiconductors for flexible electronics
,”
Adv. Mater.
19
(
15
),
1897
1916
(
2007
).
3.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
, “
Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors
,”
Nature
432
(
7016
),
488
492
(
2004
).
4.
L.
Petti
,
N.
Münzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Büthe
,
G.
Cantarella
,
T. D.
Anthopoulos
, and
G.
Tröster
, “
Metal oxide semiconductor thin-film transistors for flexible electronics Metal oxide semiconductor thin-film transistors for flexible electronics
,”
AIP Appl. Phys. Rev.
3
,
021303
(
2016
).
5.
H.
Dong
,
X.
Fu
,
J.
Liu
,
Z.
Wang
, and
W.
Hu
, “
25th anniversary article: Key points for high-mobility organic field-effect transistors
,”
Adv. Mater.
25
(
43
),
6158
6183
(
2013
).
6.
H.
Sirringhaus
, “
25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon
,”
Adv. Mater.
26
(
9
),
1319
1335
(
2014
).
7.
Y.-H.
Lin
,
H.
Faber
,
J. G.
Labram
,
E.
Stratakis
,
L.
Sygellou
,
E.
Kymakis
,
N. A.
Hastas
,
R.
Li
,
K.
Zhao
,
A.
Amassian
,
N. D.
Treat
,
M.
McLachlan
, and
T. D.
Anthopoulos
, “
High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices
,”
Adv. Sci.
2
,
1500058
(
2015
).
8.
H.
Faber
,
Y.-H.
Lin
,
S. R.
Thomas
,
K.
Zhao
,
N.
Pliatsikas
,
M. A.
McLachlan
,
A.
Amassian
,
P. A.
Patsalas
, and
T. D.
Anthopoulos
, “
Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis
,”
ACS Appl. Mater. Interfaces
7
(
1
),
782
790
(
2015
).
9.
S. Y.
Han
,
G. S.
Herman
, and
C. H.
Chang
, “
Low-temperature, high-performance, solution-processed indium oxide thin-film transistors
,”
J. Am. Chem. Soc.
133
(
14
),
5166
5169
(
2011
).
10.
H.
Hosono
, “
Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application
,”
J. Non-Cryst. Solids.
352
,
851
858
(
2006
).
11.
A. F.
Paterson
,
N. D.
Treat
,
W.
Zhang
,
Z.
Fei
,
G.
Wyatt-Moon
,
H.
Faber
,
G.
Vourlias
,
P. A.
Patsalas
,
O.
Solomeshch
,
N.
Tessler
,
M.
Heeney
, and
T. D.
Anthopoulos
, “
Small molecule/polymer blend organic transistors with hole mobility exceeding 13 cm2 V−1 s−1
,”
Adv. Mater.
28
,
7791
7798
(
2016
).
12.
J. G.
Labram
,
Y. H.
Lin
, and
T. D.
Anthopoulos
, “
Exploring two-dimensional transport phenomena in metal oxide heterointerfaces for next-generation, high-performance, thin-film transistor technologies
,”
Small
11
(
41
),
5472
5482
(
2015
).
13.
J. E.
Anthony
,
A.
Facchetti
,
M.
Heeney
,
S. R.
Marder
, and
X.
Zhan
, “
N-type organic semiconductors in organic electronics
,”
Adv. Mater.
22
(
34
),
3876
3892
(
2010
).
14.
P.
Pattanasattayavong
,
S.
Thomas
,
G.
Adamopoulos
,
M. A.
McLachlan
, and
T. D.
Anthopoulos
, “
P-channel thin-film transistors based on spray-coated Cu2O films
,”
Appl. Phys. Lett.
102
,
163505
(
2013
).
15.
G.
Gelinck
,
P.
Heremans
,
K.
Nomoto
, and
T. D.
Anthopoulos
, “
Organic transistors in optical displays and microelectronic applications
,”
Adv. Mater.
22
(
34
),
3778
3798
(
2010
).
16.
K. J.
Baeg
,
D.
Khim
,
J.
Kim
,
D. Y.
Kim
,
S. W.
Sung
,
B.
Do Yang
, and
Y. Y.
Noh
, “
Flexible complementary logic gates using inkjet-printed polymer field-effect transistors
,”
IEEE Electron Device Lett.
34
(
1
),
126
128
(
2013
).
17.
K. J.
Baeg
,
S. W.
Jung
,
D.
Khim
,
J.
Kim
,
D. Y.
Kim
,
J. B.
Koo
,
J. R.
Quinn
,
A.
Facchetti
,
I. K.
You
, and
Y. Y.
Noh
, “
Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits
,”
Organic Electronics
14
(
5
),
1407
1418
(
2013
).
18.
K. J.
Baeg
,
M.
Caironi
, and
Y. Y.
Noh
, “
Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors
,”
Adv. Mater.
25
(
31
),
4210
4244
(
2013
).
19.
M. S.
Oh
,
D. K.
Hwang
,
K.
Lee
,
W. J.
Choi
,
J. H.
Kim
,
S.
Im
,
S.
Lee
,
M. S.
Oh
,
D. K.
Hwang
,
K.
Lee
,
W. J.
Choi
,
J. H.
Kim
,
S.
Im
, and
S.
Lee
, “
Pentacene and ZnO hybrid channels for complementary thin-film transistor inverters operating at 2 V
,”
J. Appl. Phys.
102
,
076104
(
2007
).
20.
J. H.
Na
,
M.
Kitamura
,
Y.
Arakawa
,
J. H.
Na
,
M.
Kitamura
, and
Y.
Arakawa
, “
Organic/inorganic hybrid complementary circuits based on pentacene and amorphous indium gallium zinc oxide transistors
,”
Appl. Phys. Lett.
93
,
213505
(
2008
).
21.
J. B.
Kim
,
C.
Fuentes-Hernandez
,
S. J.
Kim
,
S.
Choi
, and
B.
Kippelen
, “
Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors
,”
Organic Electronics
11
(
6
),
1074
1078
(
2010
).
22.
J.
Smith
,
A.
Bashir
,
G.
Adamopoulos
,
J. E.
Anthony
,
D. D. C.
Bradley
,
R.
Hamilton
,
M.
Heeney
,
I.
McCulloch
, and
T. D.
Anthopoulos
, “
Air-stable solution-processed hybrid transistors with hole and electron mobilities exceeding 2 cm2v-1 s-1
,”
Adv. Mater.
22
(
32
),
3598
3602
(
2010
).
23.
J. B.
Kim
,
C.
Fuentes-Hernandez
,
D. K.
Hwang
,
W. J.
Potscavage
,
H.
Cheun
, and
B.
Kippelen
, “
Vertically stacked hybrid organic-inorganic complementary inverters with low operating voltage on flexible substrates
,”
Organic Electronics
12
(
1
),
45
50
(
2011
).
24.
Y. V.
Li
,
D. A.
Mourey
,
M. A.
Loth
,
D. A.
Zhao
,
J. E.
Anthony
, and
T. N.
Jackson
, “
Hybrid inorganic/organic complementary circuits using PEALD ZnO and ink-jet printed diF-TESADT TFTs
,”
Organic Electronics
14
(
10
),
2411
2417
(
2013
).
25.
W.
Zhang
,
J.
Smith
,
S. E.
Watkins
,
R.
Gysel
,
M.
McGehee
,
A.
Salleo
,
J.
Kirkpatrick
,
S.
Ashraf
,
T.
Anthopoulos
,
M.
Heeney
, and
I.
McCulloch
, “
Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors
,”
J. Am. Chem. Soc.
132
(
33
),
11437
11439
(
2010
).
26.
Y. S.
Rim
,
H.
Chen
,
Y.
Liu
,
S. H.
Bae
,
H. J.
Kim
, and
Y.
Yang
, “
Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics
,”
ACS Nano
8
(
9
),
9680
9686
(
2014
).
27.
V.
Pecunia
,
K.
Banger
,
A.
Sou
, and
H.
Sirringhaus
, “
Solution-based self-aligned hybrid organic/metal-oxide complementary logic with megahertz operation
,”
Organic Electronics
21
,
177
183
(
2015
).
28.
X.
Guo
,
L.
Feng
,
Q.
Cui
, and
X.
Xu
, “
Low voltage organic/inorganic hybrid complementary inverter with low temperature all solution processed semiconductor and dielectric layers
,”
IEEE Electron Device Lett.
35
(
5
),
542
544
(
2014
).
29.
M.
Rockele
,
D. V.
Pham
,
A.
Hoppe
,
J.
Steiger
,
S.
Botnaras
,
M.
Nag
,
S.
Steudel
,
K.
Myny
,
S.
Schols
,
R.
Müller
,
B.
Van Der Putten
,
J.
Genoe
, and
P.
Heremans
, “
Low-temperature and scalable complementary thin-film technology based on solution-processed metal oxide n-TFTs and pentacene p-TFTs
,”
Organic Electronics
12
(
11
),
1909
1913
(
2011
).
30.
K.
Myny
,
S.
Smout
,
M.
Rockelé
,
A.
Bhoolokam
,
T. H.
Ke
,
S.
Steudel
,
B.
Cobb
,
A.
Gulati
,
F.
Gonzalez Rodriguez
,
K.
Obata
,
M.
Marinkovic
,
D.-V.
Pham
,
A.
Hoppe
,
G. H.
Gelinck
,
J.
Genoe
,
W.
Dehaene
, and
P.
Heremans
, “
A thin-film microprocessor with inkjet print-programmable memory
,”
Sci. Rep.
4
,
7398
(
2014
).
31.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
, “
Oxide semiconductor thin-film transistors: A review of recent advances
,”
Adv. Mater.
24
(
22
),
2945
2986
(
2012
).
32.
Ü.
Özgür
,
D.
Hofstetter
, and
H.
Morkoc
, “
ZnO Devices and Applications: A Review of Current Status and Future Prospects
,”
Proc. IEEE
98
(
7
),
1255
1268
(
2010
).
33.
Y. H.
Lin
,
H.
Faber
,
K.
Zhao
,
Q.
Wang
,
A.
Amassian
,
M.
McLachlan
, and
T. D.
Anthopoulos
, “
High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C
,”
Adv. Mater.
25
(
31
),
4340
4346
(
2013
).
34.
Y.
Lin
,
S. R.
Thomas
,
H.
Faber
,
R.
Li
,
M. A.
Mclachlan
,
P. A.
Patsalas
, and
T. D.
Anthopoulos
, “
Al-Doped ZnO Transistors Processed from Solution at 120 °C
,”
Adv. Electron. Mater.
2
,
1600070
(
2016
).
35.
M.-G.
Kim
,
M. G.
Kanatzidis
,
A.
Facchetti
, and
T. J.
Marks
, “
Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing
,”
Nat. Mater.
10
(
5
),
382
388
(
2011
).
36.
Y.
Hwan Hwang
,
J.-S.
Seo
,
J.
Moon Yun
,
H.
Park
,
S.
Yang
,
S.-H.
Ko Park
, and
B.-S.
Bae
, “
An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates
,”
NPG Asia Mater.
5
,
e45
(
2013
).
37.
R.
Hamilton
,
J.
Smith
,
S.
Ogier
,
M.
Heeney
,
J. E.
Anthony
,
I.
McCulloch
,
J.
Veres
,
D. D. C.
Bradley
, and
T. D.
Anthopoulos
, “
High-performance polymer-small molecule blend organic transistors
,”
Adv. Mater.
21
,
1166
1171
(
2009
).
38.
J.
Smith
,
W.
Zhang
,
R.
Sougrat
,
K.
Zhao
,
R.
Li
,
D.
Cha
,
A.
Amassian
,
M.
Heeney
,
I.
McCulloch
, and
T. D.
Anthopoulos
, “
Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs
,”
Adv. Mater.
24
(
18
),
2441
2446
(
2012
).
39.
S.
Hunter
and
T. D.
Anthopoulos
, “
Observation of unusual, highly conductive grain boundaries in high-mobility phase separated organic semiconducting blend films probed by lateral-transport
,”
Adv. Mater.
25
,
4320
4326
(
2013
).

Supplementary Material

You do not currently have access to this content.