Via incorporation of Sr2+ into (Pb,La)(Zr,Sn,Ti)O3, high recoverable energy density (Ure) is achieved in (Pb,Sr,La)(Zr,Sn,Ti)O3 (PSLZST) ceramics. All Sr2+ modified ceramics exhibit orthorhombic antiferroelectric (AFE) characteristics, and have higher ferroelectric-AFE phase switching electric field (EA, proportional to Ure) than the base composition with a tetragonal AFE phase. By properly adjusting the Sr2+ content, the Ure of PSLZST ceramics is greatly improved. This is attributed to the substitution of Pb2+ by Sr2+ with a smaller ion radius, which decreases the tolerance factor leading to enhanced AFE phase stability and thus increased EA. The best energy storage properties are achieved in the PSLZST ceramic with a Sr2+ content of 0.015. It exhibits a maximum room-temperature Ure of 5.56 J/cm3, the highest value achieved so far for dielectric ceramics prepared by a conventional sintering technique, and very small energy density variation (<12%) in the range of 30–90 °C. The high Ure (>4.9 J/cm3) over a wide temperature range implies attractive prospects of this material for developing high power capacitors usable under various conditions.

1.
Z. M.
Dang
,
J. K.
Yuan
,
S. H.
Yao
, and
R. J.
Liao
,
Adv. Mater.
25
,
6334
(
2013
).
2.
A.
Chauhan
,
S.
Patel
,
R.
Vaish
, and
C. R.
Bowen
,
Materials
8
,
8009
(
2015
).
3.
Q.
Li
,
K.
Han
,
M. R.
Gadinski
,
G. Z.
Zhang
, and
Q.
Wang
,
Adv. Mater.
26
,
6244
(
2014
).
4.
K.
Han
,
Q.
Li
,
C.
Chanthad
,
M. R.
Gadinski
,
G. Z.
Zhang
, and
Q.
Wang
,
Adv. Funct. Mater.
25
,
3505
(
2015
).
5.
B. L.
Peng
,
Q.
Zhang
,
X.
Li
,
T. Y.
Sun
,
H. Q.
Fan
,
S. M.
Ke
,
M.
Ye
,
Y.
Wang
,
W.
Lu
,
H. B.
Niu
,
J. F.
Scott
,
X. R.
Zeng
, and
H. T.
Huang
,
Adv. Electron. Mater.
1
,
1500052
(
2015
).
6.
C. W.
Ahn
,
G.
Amarsanaa
,
S. S.
Won
,
S. A.
Chae
,
D. S.
Lee
, and
I. W.
Kim
,
ACS Appl. Mater. Interfaces
7
,
26381
(
2015
).
8.
M.
Rabuffi
and
G.
Picci
,
IEEE Trans. Plasma Sci.
30
,
1939
(
2002
).
9.
J. H.
Pikul
,
H. G.
Zhang
,
J.
Cho
,
P. V.
Braun
, and
W. P.
King
,
Nat. Commun.
4
,
1732
(
2013
).
10.
M. F.
El-Kady
,
V.
Strong
,
S.
Dubin
, and
R. B.
Kaner
,
Science
335
,
1326
(
2012
).
11.
Z. S.
Wu
,
K.
Parvez
,
X. L.
Feng
, and
K.
Müllen
,
Nat. Commun.
4
,
2487
(
2013
).
12.
H.
Pan
,
Y.
Zeng
,
Y.
Shen
,
Y. H.
Lin
, and
C. W.
Nan
,
J. Appl. Phys.
119
,
124106
(
2016
).
13.
Z.
Liu
,
X. F.
Chen
,
W.
Peng
,
C. H.
Xu
,
X. L.
Dong
,
F.
Cao
, and
G. S.
Wang
,
Appl. Phys. Lett.
106
,
262901
(
2015
).
14.
X. C.
Wang
,
J.
Shen
,
T. Q.
Yang
,
Z.
Xiao
, and
Y.
Dong
,
J. Mater. Sci.: Mater. Electron.
26
,
9200
(
2015
).
15.
X. F.
Chen
,
F.
Cao
,
H. L.
Zhang
,
G.
Yu
,
G. S.
Wang
,
X. L.
Dong
,
Y.
Gu
,
H. L.
He
, and
Y. S.
Liu
,
J. Am. Ceram. Soc.
95
,
1163
(
2012
).
16.
X. C.
Wang
,
J.
Shen
,
T. Q.
Yang
,
Y.
Dong
, and
Y. Z.
Liu
,
J. Alloys Compd.
655
,
309
(
2016
).
17.
L.
Zhang
,
S. L.
Jiang
,
Y. K.
Zeng
,
M.
Fu
,
K.
Han
,
Q.
Li
,
Q.
Wang
, and
G. Z.
Zhang
,
Ceram. Int.
40
,
5455
(
2014
).
18.
J. F.
Wang
,
T. Q.
Yang
,
S. C.
Chen
, and
G.
Li
,
Mater. Res. Bull.
48
,
3847
(
2013
).
19.
Q.
Zhang
,
X. L.
Liu
,
Y.
Zhang
,
X. Z.
Song
,
J.
Zhu
,
I.
Baturin
, and
J. F.
Chen
,
Ceram Int.
41
,
3030
(
2015
).
20.
S. C.
Chen
,
X. C.
Wang
,
T. Q.
Yang
, and
J. F.
Wang
,
J. Electroceram.
32
,
307
(
2014
).
21.
Y. J.
Yu
and
R. N.
Singh
,
J. Appl. Phys.
88
,
7249
(
2000
).
22.
Q. F.
Zhang
,
T. Q.
Yang
,
Y. Y.
Zhang
,
J. F.
Wang
, and
X.
Yao
,
Appl. Phys. Lett.
102
,
222904
(
2013
).
23.
L.
Shebanov
,
M.
Kusnetsov
, and
A.
Sternberg
,
J. Appl. Phys.
76
,
4301
(
1994
).
24.
M. S.
Mirshekarloo
,
K.
Yao
, and
T.
Sritharan
,
Appl. Phys. Lett.
97
,
142902
(
2010
).
25.
Q. F.
Zhang
,
T. Q.
Yang
,
Y. Y.
Zhang
, and
X.
Yao
,
J. Appl. Phys.
113
,
244103
(
2013
).
26.
X. F.
Chen
,
H. L.
Zhang
,
F.
Cao
,
G. S.
Wang
,
X. L.
Dong
,
Y.
Gu
,
H. L.
He
, and
Y. S.
Liu
,
J. Appl. Phys.
106
,
034105
(
2009
).
You do not currently have access to this content.