Vibration, widely existing in an ambient environment with a variety of forms and wide-range of scales, recently becomes an attractive target for energy harvesting. However, its time-varying directions and frequencies render a lack of effective energy technology to scavenge it. Here, we report a rationally designed nonlinear magnetoelectric generator for broadband and multi-directional vibration energy harvesting. By using a stabilized three-dimensional (3D) magnetic interaction and spring force, the device working bandwidth was largely broadened, which was demonstrated both experimentally and theoretically. The multidirectional vibration energy harvesting was enabled by three identical suspended springs with equal intersection angles, which are all connected to a cylindrical magnet. Numerical simulations and experimental results show that the nonlinear harvester can sustain large-amplitude oscillations over a wide frequency range, and it can generate power efficiently in an arbitrary direction. Moreover, the experimental data suggest that the proposed nonlinear energy harvester has the potential to scavenge vibrational energy over a broad range of ambient frequencies in 3D space.

1.
G.
Zhu
,
J.
Chen
,
T.
Zhang
,
Q. S.
Jing
, and
Z. L.
Wang
,
Nat. Commun.
5
,
3426
(
2014
).
2.
Y.
Hu
and
Y.
Xu
,
Appl. Phys. Lett.
104
,
053902
(
2014
).
3.
S. R.
Anton
and
H. A.
Sodano
,
Smart Mater. Struct.
16
,
R1
(
2007
).
4.
H.
Okamoto
,
Y.
Hamate
,
L.
Xu
, and
H.
Kuwano
,
Smart Mater. Struct.
21
,
065001
(
2012
).
5.
D. S.
Nguyen
,
E.
Halvorsen
,
G. U.
Jensen
, and
A.
Vogl
,
J. Micromech. Microeng.
20
,
125009
(
2010
).
6.
T. S.
Almoneef
and
O. M.
Ramahi
,
Appl. Phys. Lett.
106
,
153902
(
2015
).
7.
J.
Yang
,
Q.
Yu
,
J.
Zhao
,
N.
Zhao
,
Y.
Wen
,
P.
Li
, and
J.
Qiu
,
J. Appl. Phys.
116
,
114506
(
2014
).
8.
J.
Yang
,
Y.
Wen
,
P.
Li
,
X.
Yue
,
Q.
Yu
, and
X.
Bai
,
Appl. Phys. Lett.
103
,
243903
(
2013
).
9.
J.
Ma
,
J. M.
Hu
,
Z.
Li
, and
C. W.
Nan
,
Adv. Mater.
23
,
1062
(
2011
).
10.
Y.
Su
,
J.
Chen
,
Z.
Wu
, and
Y.
Jiang
,
Appl. Phys. Lett.
106
,
013114
(
2015
).
11.
J.
Chen
,
G.
Zhu
,
W.
Yang
,
Q.
Jing
,
P.
Bai
,
Y.
Yang
,
T. C.
Hou
, and
Z. L.
Wang
,
Adv. Mater.
25
,
6094
(
2013
).
12.
J.
Chen
,
J.
Yang
,
Z.
Li
,
X.
Fan
,
Y.
Zi
,
Q.
Jing
,
H.
Guo
,
Z.
Wen
,
K. C.
Pradel
,
S.
Niu
, and
Z. L.
Wang
,
ACS Nano
9
,
3324
(
2015
).
13.
J.
Yang
,
J.
Chen
,
Y.
Yang
,
H. L.
Zhang
,
W. Q.
Yang
,
P.
Bai
,
Y. J.
Su
, and
Z. L.
Wang
,
Adv. Energy Mater.
4
,
1301322
(
2014
).
14.
J.
Chen
,
J.
Yang
,
H.
Guo
,
Z.
Li
,
L.
Zheng
,
Y.
Su
,
Z.
Wen
,
C.
Wu
,
X.
Fan
, and
Z. L.
Wang
,
ACS Nano
9
,
12334
(
2015
).
15.
H.
Liu
,
B. W.
Soon
,
N.
Wang
,
C. J.
Tay
,
C.
Quan
, and
C.
Lee
,
J. Micromech. Microeng.
22
,
125020
(
2012
).
16.
M.
Han
,
G.
Qiu
,
W.
Liu
,
B.
Meng
,
X.
Zhang
, and
H.
Zhang
,
Rev. Sci. Instrum.
85
,
076109
(
2014
).
17.
N.
Zhao
,
J.
Yang
,
Q.
Yu
,
J.
Zhao
,
J.
Liu
,
Y.
Wen
, and
P.
Li
,
Rev. Sci. Instrum.
87
,
015003
(
2016
).
18.
J.
Xu
and
J.
Tang
,
Appl. Phys. Lett.
107
,
213902
(
2015
).
19.
Y.
Yang
,
H.
Wu
, and
C. K.
Soh
,
Smart Mater. Struct.
24
,
125011
(
2015
).
20.
R.
Ramlan
,
M. J.
Brennan
,
B. R.
Mace
, and
I.
Kovacic
,
Nonlinear Dyn.
59
,
545
(
2010
).
21.
W. Q.
Liu
,
A.
Badel
,
F.
Formosa
,
Y. P.
Wu
, and
A.
Agbossou
,
Smart Mater. Struct.
22
,
035013
(
2013
).
22.
R. L.
Harne
,
M.
Thota
, and
K. W.
Wang
,
Appl. Phys. Lett.
102
,
053903
(
2013
).
23.
X.
Dai
,
Y.
Wen
,
P.
Li
,
J.
Yang
, and
G.
Zhang
,
Sens. Actuators, A
156
,
350
(
2009
).
24.
Q.
Yu
,
J.
Yang
,
X.
Yue
,
A.
Yang
,
J.
Zhao
,
N.
Zhao
,
Y.
Wen
, and
P.
Li
,
AIP Adv.
5
,
047144
(
2015
).
25.
H.
Zhang
,
Y.
Yang
,
Y.
Su
,
J.
Chen
,
K.
Adams
,
S.
Lee
,
C.
Hu
, and
Z. L.
Wang
,
Adv. Funct. Mater.
24
,
1401
(
2014
).
26.
E. E.
Aktakka
and
K.
Najafi
, in
IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
(
2015
).
27.
R. C.
O'Handley
,
J. K.
Huang
,
D. C.
Bono
, and
J.
Simon
,
IEEE Sens. J.
8
,
57
(
2008
).
28.
S.
Roundy
,
E. S.
Leland
,
J.
Baker
,
E.
Carleton
,
E.
Reilly
,
E.
Lai
,
B.
Otis
,
J. M.
Rabaey
,
P. K.
Wright
, and
V.
Sundararajan
,
IEEE Pervasive Comput.
4
,
28
(
2005
).

Supplementary Material

You do not currently have access to this content.