Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

1.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
,
Science
324
(
5932
),
1312
1314
(
2009
).
2.
F.
Xia
,
D. B.
Farmer
,
Y.
Lin
, and
P.
Avouris
,
Nano Lett.
10
(
2
),
715
718
(
2010
).
3.
A.
Reina
,
X.
Jia
,
J.
Ho
,
D.
Nezich
,
H.
Son
,
V.
Bulovic
,
M. S.
Dresselhaus
, and
J.
Kong
,
Nano Lett.
9
(
1
),
30
35
(
2009
).
4.
X.
Li
,
W.
Cai
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
(
12
),
4268
4272
(
2009
).
5.
A. L.
Lee
,
L.
Tao
, and
D.
Akinwande
,
ACS Appl. Mater. Interfaces
7
(
3
),
1527
1532
(
2015
).
6.
P. W.
Sutter
,
J.-I.
Flege
, and
E. A.
Sutter
,
Nat. Mater.
7
,
406
411
(
2008
).
7.
L.
Tao
,
J.
Lee
,
H.
Chou
,
M.
Holt
,
R. S.
Ruoff
, and
D.
Akinwande
,
ACS Nano
6
(
3
),
2319
2325
(
2012
).
8.
G. H.
Han
,
F.
Gune
,
J. J.
Bae
,
E. S.
Kim
,
S. J.
Chae
,
H.-J.
Shin
,
J.-Y.
Choi
,
D.
Pribat
, and
Y. H.
Lee
,
Nano Lett.
11
(
10
),
4144
4148
(
2011
).
9.
K.
Hayashi
,
S.
Sato
,
M.
Ikeda
,
C.
Kaneta
, and
N.
Yokoyama
,
J. Am. Chem. Soc.
134
(
30
),
12492
12498
(
2012
).
10.
H.
Kim
,
I.
Song
,
C.
Park
,
M.
Son
,
M.
Hong
,
Y.
Kim
,
J. S.
Kim
,
H.-J.
Shin
,
J.
Baik
, and
H. C.
Choi
,
ACS Nano
7
(
8
),
6575
6582
(
2013
).
11.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
710
(
2009
).
12.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J.-S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H. R.
Kim
,
Y. I.
Song
,
Y.-J.
Kim
,
K. S.
Kim
,
B.
Özyilmaz
,
J.-H.
Ahn
,
B. H.
Hong
, and
S.
Iijima
,
Nat. Nanotechnol.
5
,
574
578
(
2010
).
13.
Y.
Wang
,
B. C.
Huang
,
M.
Zhang
,
C.
Miao
,
Y. H.
Xie
, and
J. C. S.
Woo
, in
2011 Symposium on VLSI Technology (VLSIT), Honolulu, HI
(
2011
), pp.
116
117
.
14.
M. P.
Levendorf
,
C. S.
Ruiz-Vargas
,
S.
Garg
, and
J.
Park
,
Nano Lett.
9
(
12
),
4479
4483
(
2009
).
15.
T. H.
Bointon
,
M. D.
Barnes
,
S.
Russo
, and
M. F.
Craciun
,
Adv. Mater.
27
,
4200
4206
(
2015
).
16.
N. S.
Mueller
,
A. J.
Morfa
,
D.
Abou-Ras
,
V.
Oddone
,
T.
Ciuk
, and
M.
Giersig
,
Carbon
78
,
347
355
(
2014
).
17.
P. Y.
Teng
,
C. C.
Lu
,
K.
Akiyama-Hasegawa
,
Y.-C.
Lin
,
C.-H.
Yeh
,
K.
Suenaga
, and
P.-W.
Chiu
,
Nano Lett.
12
,
1379
1384
(
2012
).
18.
S.
Bhaviripudi
,
X.
Jia
,
M. S.
Dresselhaus
, and
J.
Kong
,
Nano Lett.
10
(
10
),
4128
4133
(
2010
).
19.
Y.
Li
,
W.
Deng
,
D.
Wang
,
Y.
Chen
, and
W.
Zhou
,
J. Electron. Mater.
44
(
11
),
4182
4186
(
2015
).
You do not currently have access to this content.