A boiling crisis, or critical heat flux (CHF), is a condition that determines the upper bound on removable thermal energy at a boiling surface. In such situations, the liquid cannot wet the surface because a vapor film completely covers it. CHF is enhanced on micro-structured surfaces when under boiling conditions. CHF values were measured for surfaces with rectangular microchannel geometries of various channel widths, (10–30 μm) and generally increased in value as channel widths decreased. However, the CHF value for the 5-μm channel-width surface was found to be lower than the wider channel-width surfaces. This observation contradicts models based on vapor recoil and classical instability mechanisms. Hence, we present a fluid-dynamics model that considers capillary pumping and viscous friction. With a focus on the spatial distribution of the liquid penetration region and the local dry spot under a large vapor bubble, this model can accurately predict the CHF variation associated with different channel widths.

1.
L. S.
Tong
,
Boiling Crisis and Critical Heat Flux
, TID-25887 (
Westinghouse Electric Corp.
,
Pittsburgh, PA
,
1972
).
2.
R. L.
Webb
and
N-H.
Kim
,
Principle of Enhanced Heat Transfer
(
Taylor Francis
,
New York, NY, USA
,
1994
).
3.
C.
Huh
,
K. S.
Lee
,
E. J.
Kang
, and
S. J.
Park
,
J. Appl. Phys.
93
,
9383
(
2003
).
4.
K. H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
,
241603
(
2012
).
5.
D.
Coso
,
V.
Srinivasan
,
M. C.
Le
,
J. Y.
Chang
, and
A.
Majumdar
,
ASME J. Heat Transfer
134
,
101501
(
2012
).
6.
A.
Zou
and
S. C.
Maroo
,
Appl. Phys. Lett.
103
,
221602
(
2013
).
7.
N.
Zuber
, “
Hydrodynamic aspects of boiling heat transfer
,” AEC Report, AECU-4439,
1959
.
8.
H. S.
Ahn
,
C.
Lee
,
J.
Kim
, and
M. H.
Kim
,
Int. J. Heat Mass Transfer
55
,
89
(
2012
).
9.
B. S.
Kim
,
H.
Lee
,
S.
Shin
,
G.
Choi
, and
H. H.
Cho
,
Appl. Phys. Lett.
105
,
191601
(
2014
).
10.
V. S.
Nikolayev
,
D.
Chatain
,
Y.
Garrabos
, and
D.
Beysens
,
Phys. Rev. Lett.
97
,
184503
(
2006
).
11.
N. S.
Dhillon
,
J.
Buongiorno
, and
K. K.
Varanasi
,
Nat. Commun.
6
,
8247
(
2015
).
12.
S. H.
Kim
,
G. C.
Lee
,
J. Y.
Kang
,
K.
Moriyama
,
M. H.
Kim
, and
H. S.
Park
,
Int. J. Heat Mass Transfer
91
,
1140
(
2015
).
13.
D. E.
Kim
,
D. I.
Yu
,
S. C.
Park
,
H. J.
Kwak
, and
H. S.
Ahn
,
Int. J. Heat Mass Transfer
91
,
1237
(
2015
).
14.
D. E.
Kim
,
S. C.
Park
,
D. I.
Yu
,
M. H.
Kim
, and
H. S.
Ahn
,
Appl. Phys. Lett.
107
,
023903
(
2015
).
15.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer Science & Business Media
,
2013
).
16.
R. F.
Gaertner
and
J. W.
Westwater
,
Chem. Eng. Prog. Symp. Ser.
46
,
39
(
1960
).
17.
Y.
Haramura
and
Y.
Katto
,
Int. J. Heat Mass Transfer
26
,
389
(
1983
).
18.
G. E.
Schneider
and
R.
Devos
,
AIAA Paper No. 80-0214
,
1980
.
19.
D. I.
Yu
,
H. J.
Kwak
,
S. W.
Doh
,
H. S.
Ahn
,
H. S.
Park
,
M.
Kiyofumi
, and
M. H.
Kim
,
Langmuir
31
,
1950
(
2015
).
20.
G.
Whyman
and
E.
Bomashenko
,
J. Colloid Interface Sci.
331
,
174
(
2009
).
21.
V. A.
Ludarda
and
K. A.
Talke
,
Langmuir
27
,
10705
(
2011
).
22.
J. W.
Gibbs
,
The Scientific Papers
(
Dover
,
New York
,
1961
), Vol.
I
.
23.
B.
Widom
,
J. Phys. Chem.
99
,
2803
(
1995
).
24.
A.
Marmur
,
J. Colloid Interface Sci.
186
,
462
(
1997
).
25.
T.
Pompe
and
S.
Herminghaus
,
Phys. Rev. Lett.
85
,
1930
(
2000
).
26.
S. K.
Singha
,
P. K.
Das
, and
B.
Maiti
,
J. Chem. Phys.
142
,
104706
(
2015
).
27.
D. B.
Kirby
and
J. W.
Westwater
,
Chem. Eng. Prog. Symp. Ser.
61
,
238
(
1965
).
28.
H. J.
Van Ouwerkerk
,
Int. J. Heat Mass Transfer
15
,
25
(
1972
).
29.
I. C.
Chu
,
H. C.
No
, and
C. H.
Song
,
Int. J. Heat Mass Transfer
62
,
142
(
2013
).
30.
D. E.
Kim
,
J.
Song
, and
H.
Kim
,
Int. J. Heat Mass Transfer
99
,
409
(
2016
).

Supplementary Material

You do not currently have access to this content.