The macroscopic thermal transport is fundamentally determined by the intrinsic interactions among microscopic electrons and phonons. In conventional insulators and semiconductors, phonons dominate the thermal transport, and the contribution of electron-phonon interaction (EPI) is negligible. However, in polar semiconductors, the Fröhlich electron-phonon coupling is strong and its influence on phononic thermal transport is of great significance. In this work, the effect of EPI on phonon dispersion and lattice thermal conductivity of wurtzite gallium nitride (GaN) is comprehensively investigated from the atomistic level by performing first-principles calculations. Due to the existence of relatively large electronegativity difference between Ga and N atoms, the Fröhlich coupling in wurtzite GaN is remarkably strong. Consequently, the lattice thermal conductivity of natural wurtzite GaN at room temperature is reduced by ∼24%–34% when including EPI, and the resulted thermal conductivity value is in better agreement with experiments. Furthermore, the scattering rate of phonons due to EPI, the intrinsic phonon-phonon interaction (PPI) as well as isotope disorder is computed and analyzed. It shows that the EPI scattering rate is comparable to PPI for low-frequency heat-carrying phonons. This work attempts to explore the mechanism of thermal transport beyond intrinsic PPI for polar semiconductors, with a great potential of thermal conductivity engineering for desired performance.

1.
X. L.
Nguyen
,
T. N. N.
Nguyen
,
B. T.
Chau
, and
M. C.
Dang
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
1
,
025015
(
2010
).
2.
N.
Han
,
T. V.
Cuong
,
M.
Han
,
B. D.
Ryu
,
S.
Chandramohan
,
J. B.
Park
,
J. H.
Kang
,
Y.-J.
Park
,
K. B.
Ko
,
H. Y.
Kim
,
H. K.
Kim
,
J. H.
Ryu
,
Y. S.
Katharria
,
C.-J.
Choi
, and
C.-H.
Hong
,
Nat. Commun.
4
,
1452
(
2013
).
3.
K.
Shenai
,
K.
Shah
, and
H.
Xing
, in
Proceedings of the IEEE NAECON Conference
(
IEEE
,
New York
,
2010
), p.
317
.
4.
K.
Chung
,
C.-H.
Lee
, and
G.-C.
Yi
,
Science
330
,
655
(
2010
).
5.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y. F.
Wu
,
Proc. IEEE
96
,
287
(
2008
).
6.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
New York
,
1960
).
7.
M.
Hu
,
K. P.
Giapis
,
J. V.
Goicochea
,
X.
Zhang
, and
D.
Poulikakos
,
Nano Lett.
11
,
618
(
2011
).
8.
M.
Hu
and
D.
Poulikakos
,
Nano Lett.
12
,
5487
(
2012
).
9.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
,
Phys. Rev. B
87
,
165201
(
2013
).
10.
D. A.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D. A.
Stewart
,
Appl. Phys. Lett.
91
,
231922
(
2007
).
11.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
,
Phys. Rev. Lett.
109
,
095901
(
2012
).
12.
S. J.
Sheih
,
K. T.
Tsen
,
D. K.
Ferry
,
A.
Botchkarev
,
B.
Sverdlov
,
A.
Salvador
, and
H.
Morkoç
,
Appl. Phys. Lett.
67
,
1757
(
1995
).
13.
M.
Cardona
,
Solid State Commun.
133
,
3
(
2005
).
14.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
,
Comput. Phys. Commun.
185
,
1747
(
2014
).
15.
A.
Ward
,
D. A.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
,
Phys. Rev. B
80
,
125203
(
2009
).
16.
A. J. H.
McGaughey
and
A.
Jain
,
Appl. Phys. Lett.
100
,
061911
(
2012
).
17.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
18.
S.-I.
Tamura
,
Phys. Rev. B
30
,
849
(
1984
).
19.
J. Y.
Yang
and
L. H.
Liu
,
Appl. Phys. Lett.
107
,
091902
(
2015
).
20.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
,
Comput. Phys. Commun.
209
,
116
(
2016
).
21.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
23.
C.
Verdi
and
F.
Giustino
,
Phys. Rev. Lett.
115
,
176401
(
2015
).
24.
M.
Schlipf
and
F.
Gygi
,
Comput. Phys. Commun.
196
,
36
(
2015
).
25.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
 et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
26.
H.
Schulz
and
K. H.
Thiemann
,
Solid State Commun.
23
,
815
(
1977
).
27.
A. R.
Goñi
,
H.
Siegle
,
K.
Syassen
,
C.
Thomsen
, and
J. M.
Wagner
,
Phys. Rev. B
64
,
035205
(
2001
).
28.
T.
Ruf
,
J.
Serrano
,
M.
Cardona
,
P.
Pavone
,
M.
Pabst
,
M.
Krisch
,
M.
D'Astuto
,
T.
Suski
,
I.
Grzegory
, and
M.
Leszczynski
,
Phys. Rev. Lett.
86
,
906
(
2001
).
29.
G. A.
Slack
,
L. J.
Schowalter
,
D.
Morelli
, and
J. A.
Freitas
, Jr.
,
J. Cryst. Growth
246
,
287
(
2002
).
30.
A.
Jeżowski
,
P.
Stachowiak
,
T.
Plackowski
,
T.
Suski
,
S.
Krukowski
,
M.
Boćkowski
,
I.
Grzegory
,
B.
Danilchenko
, and
T.
Paszkiewicz
,
Phys. Status Solidi B
240
,
447
(
2003
).
31.
W.
Li
and
N.
Mingo
,
Phys. Rev. B
89
,
184304
(
2014
).
32.
W.
Li
and
N.
Mingo
,
Phys. Rev. B
91
,
144304
(
2015
).

Supplementary Material

You do not currently have access to this content.