We present the evidence of universality in conical tip formation during the freezing of arbitrary-shaped sessile droplets. The focus is to demonstrate the relationship between this universality and the liquid drop shape. We observe that, in the case of asymmetric drops, this universal shape is achieved when the tip reconfigures by changing its location, which subsequently alters the frozen drop shape. The proposed “two-triangle” model quantifies the change in the tip configuration as a function of the asymmetry of the drop that shows a good agreement with the experimental evidence. Finally, based on the experimental and theoretical exercise, we propose the scaling dependence between the variations in the tip configuration and the asymmetry of the drop.

1.
J. H.
Snoeijer
and
P.
Brunet
, “
Pointy ice-drops: How water freezes into a singular shape
,”
Am. J. Phys.
80
(
9
),
764
(
2012
).
2.
A.
Schetnikov
,
V.
Matiunin
, and
V.
Chernov
, “
Conical shape of frozen water droplets
,”
Am. J. Phys.
83
(
1
),
36
38
(
2015
).
3.
A. G.
Marín
,
O. R.
Enríquez
,
P.
Brunet
,
P.
Colinet
, and
J. H.
Snoeijer
, “
Universality of tip singularity formation in freezing water drops
,”
Phys. Rev. Lett.
113
(
5
),
1
5
(
2014
).
4.
D. M.
Anderson
,
M.
Grae Worster
, and
S. H.
Davis
, “
The case for a dynamic contact angle in containerless solidification
,”
J. Cryst. Growth
163
(
3
),
329
338
(
1996
).
5.
V. S.
Ajaev
and
S. H.
Davis
, “
The effect of tri-junction conditions in droplet solidification
,”
J. Cryst. Growth
264
(
1–3
),
452
462
(
2004
).
6.
I.
Peters
,
J. H.
Snoeijer
,
A.
Daerr
, and
L.
Limat
, “
Coexistence of two singularities in dewetting flows: Regularizing the corner tip
,”
Phys. Rev. Lett.
103
(
11
),
114501
(
2009
).
7.
N.
Kayansayan
and
M.
Ali Acar
, “
Ice formation around a finned-tube heat exchanger for cold thermal energy storage
,”
Int. J. Therm. Sci.
45
(
4
),
405
418
(
2006
).
8.
SKYbrary
, See http://www.skybrary.aero/index.php/In-Flight_Icing for In-Flight Icing.
9.
C.
Hochart
,
G.
Fortin
,
J.
Perron
, and
A.
Ilinca
, “
Wind turbine performance under icing conditions
,”
Wind Energy
11
(
4
),
319
333
(
2008
).
10.
S. L.
Nail
,
S.
Jiang
,
S.
Chongprasert
, and
S. A.
Knopp
, “
Fundamentals of freeze-drying
,”
Pharm. Biotechnol.
14
(
1078–0467
),
281
360
(
2002
).
11.
S.
Jung
,
M. K.
Tiwari
, and
D.
Poulikakos
, “
Frost halos from supercooled water droplets
,”
Proc. Natl. Acad. Sci. U. S. A
109
(
40
),
16073
16078
(
2012
).
12.
M. E.
Bonomo
,
Analyzing the Singularities of Freezing Sessile Water Droplets
(
Dickinson College
,
2013
).
13.
S.
Jung
,
M. K.
Tiwari
,
N. V.
Doan
, and
D.
Poulikakos
, “
Mechanism of supercooled droplet freezing on surfaces
,”
Nat. Commun.
3
,
615
618
(
2012
).
14.
H.
Zhang
,
Y.
Zhao
,
R.
Lv
, and
C.
Yang
, “
Freezing of sessile water droplet for various contact angles
,”
Int. J. Therm. Sci.
101
,
59
67
(
2016
).
15.
Z.
Jin
,
D.
Sui
, and
Z.
Yang
, “
The impact, freezing, and melting processes of a water droplet on an inclined cold surface
,”
Int. J. Heat Mass Transfer
90
,
439
453
(
2015
).
16.
P. A. J.
Olsen
,
A.
Douglas
, and
M. D.
Olson
, “
The sliding of liquid drops on solid surfaces
,”
J. Phys. Chem.
66
(
5
),
883
886
(
1962
).
17.
A. I.
ElSherbini
and
A. M.
Jacobi
, “
Liquid drops on vertical and inclined surfaces: II. A method for approximating drop shapes
,”
J. Colloid Interface Sci.
273
(
2
),
566
575
(
2004
).
18.
M. J.
Santos
,
S.
Velasco
, and
J.
White
, “
Simulation analysis of contact angles and retention forces of liquid drops on inclined surfaces
,”
Langmuir
28
(
32
),
11819
11826
(
2012
).
19.
D. K.
Mandal
,
A.
Criscione
,
C.
Tropea
, and
A.
Amirfazli
, “
Shedding of water drops from a surface under icing conditions
,”
Langmuir
31
(
34
),
9340
(
2015
).
20.
C. W.
Extrand
and
Y.
Kumagai
, “
Liquid drops on an inclined plane: The relation between contact angles, drop shape, and retentive force
,”
J. Colloid Interface Sci.
170
(
2
),
515
521
(
1995
).
21.
D.
Rosenfeld
and
W.
Woodley
, “
Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C
,”
Nature
405
(
6785
),
440
442
(
2000
).
22.
A. I.
ElSherbini
and
A. M.
Jacobi
, “
Liquid drops on vertical and inclined surfaces: I. An experimental study of drop geometry
,”
J. Colloid Interface Sci.
273
(
2
),
556
565
(
2004
).

Supplementary Material

You do not currently have access to this content.