Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10−9 → 10–11 m3) corresponding to increasing concentrations (10−4 → 10−2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

1.
J.
Dec
, SAE Technical Paper No. 970873 (
1997
).
2.
M.
Linne
,
Prog. Energy Combust. Sci.
39
,
403
(
2013
).
3.
S.
Krüger
and
G.
Grünefeld
,
Appl. Phys. B
71
,
611
(
2000
).
4.
S.
Wissel
,
T.
Hoffmann
,
P.
Hottenbach
,
H.
Koss
,
C.
Pauls
, and
G.
Grünefeld
, SAE International No. 2008-01-0944 (
2008
).
5.
D.
van der Voort
,
B.
de Ruijter
,
W.
van de Water
,
N.
Dam
,
H.
Clercx
, and
G.
van Heijst
,
Atomization Sprays
26
,
219
(
2016
).
6.
D.
van der Voort
,
N.
Maes
,
T.
Lamberts
,
W.
van de Water
,
R.
Kunnen
,
H.
Clercx
,
G.
van Heijst
, and
N.
Dam
,
Rev. Sci. Instrum.
87
,
033702
(
2016
).
7.
W.
Staroske
,
M.
Pfeiffer
,
K.
Leo
, and
M.
Hoffmann
,
Phys. Rev. Lett.
98
,
197402
(
2007
).
8.
J.
Ribierre
,
A.
Ruseckas
,
K.
Knights
,
S.
Staton
,
N.
Cumpstey
,
P.
Burn
, and
I.
Samuel
,
Phys. Rev. Lett.
100
,
017402
(
2008
).
9.
M. A.
Baldo
,
C.
Adachi
, and
S.
Forrest
,
Phys. Rev. B
62
,
10967
(
2000
).
10.
A.
Buchachenko
and
V.
Berdinsky
,
Chem. Rev.
102
,
603
(
2002
).
11.
A.
Charogiannis
and
F.
Beyrau
,
Exp. Fluids
54
,
1518
(
2013
).
12.
A.
Omrane
,
G.
Juhlin
,
F.
Ossler
, and
M.
Alden
,
Appl. Opt.
43
,
3523
(
2004
).
13.
A.
Yarin
,
G.
Brenn
,
O.
Kastner
,
D.
Rensink
, and
C.
Tropea
,
J. Fluid Mech.
399
,
151
(
1999
).
14.
A.
Omrane
,
S.
Santesson
,
M.
Alden
, and
S.
Nilsson
,
Lab Chip
4
,
287
(
2004
).
15.
A.
Yarin
,
M.
Pfaffenlehner
, and
C.
Tropea
,
J. Fluid Mech.
356
,
65
(
1998
).
16.
N.
Arnaud
and
J.
Georges
,
Spectrochim. Acta, Part A
59
,
1829
(
2003
).
17.
T.
Brands
,
P.
Hottenbach
,
H.
Koß
,
G.
Grünefeld
,
S.
Pischinger
, and
P.
Adomeit
,
J. Phys. Sci. Appl.
3
,
279
(
2013
).
18.
B.
Frackowiak
and
C.
Tropea
,
Appl. Opt.
49
,
2363
(
2010
).
19.
W.
Niven
,
The Scientific Papers of James Clerk Maxwell
, 1st ed. (
Dover Publications
,
1890
).
20.
D.
Charlesworth
and
W.
Marshall
, Jr.
,
Am. Inst. Chem. Eng.
6
,
9
(
1960
).
21.
C.
Sadek
,
P.
Schuck
,
Y.
Fallourd
,
N.
Pradeau
,
C. L.
Floch-Fouere
, and
R.
Jeantet
,
Dairy Sci. Technol.
95
,
771
(
2015
).
22.
A.
Marin
,
H.
Gelderblom
,
A.
Susarrey-Arce
,
A.
van Houselt
,
L.
Lefferts
,
J.
Gardeniers
,
D.
Lohse
, and
J.
Snoeijer
,
Proc. Natl. Acad. Sci. USA
109
,
16455
(
2012
).
23.
N.
Tsapis
,
E.
Dufresne
,
S.
Sinha
,
C.
Riera
,
J.
Hutchinson
,
L.
Mahadevan
, and
D.
Weitz
,
Phys. Rev. Lett.
94
,
018302
(
2005
).
24.
R.
Domann
and
Y.
Hardalupas
,
Appl. Opt.
40
,
3586
(
2001
).

Supplementary Material

You do not currently have access to this content.