Perovskite/crystalline silicon tandem solar cells have the potential to reach efficiencies beyond those of silicon single-junction record devices. However, the high-temperature process of 500 °C needed for state-of-the-art mesoscopic perovskite cells has, so far, been limiting their implementation in monolithic tandem devices. Here, we demonstrate the applicability of zinc tin oxide as a recombination layer and show its electrical and optical stability at temperatures up to 500 °C. To prove the concept, we fabricate monolithic tandem cells with mesoscopic top cell with up to 16% efficiency. We then investigate the effect of zinc tin oxide layer thickness variation, showing a strong influence on the optical interference pattern within the tandem device. Finally, we discuss the perspective of mesoscopic perovskite cells for high-efficiency monolithic tandem solar cells.

1.
See http://www.nrel.gov/ncpv/images/efficiency_chart.jpg for “NREL Efficiency Chart” (last accessed October 30,
2016
).
2.
J. P.
Mailoa
,
C. D.
Bailie
,
E. C.
Johlin
,
E. T.
Hoke
,
A. J.
Akey
,
W. H.
Nguyen
,
M. D.
McGehee
, and
T.
Buonassisi
, “
A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction
,”
Appl. Phys. Lett.
106
,
121105
(
2015
).
3.
S.
Albrecht
,
M.
Saliba
,
J. P.
Correa Baena
,
F.
Lang
,
L.
Kegelmann
,
M.
Mews
,
L.
Steier
,
A.
Abate
,
J.
Rappich
,
L.
Korte
 et al, “
Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
,”
Energy Environ. Sci.
9
,
81
88
(
2016
).
4.
J.
Werner
,
C.-H.
Weng
,
A.
Walter
,
L.
Fesquet
,
J. P.
Seif
,
S.
De Wolf
,
B.
Niesen
, and
C.
Ballif
, “
Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2
,”
J. Phys. Chem. Lett.
7
,
161
166
(
2016
).
5.
J.
Werner
,
L.
Barraud
,
A.
Walter
,
M.
Bräuninger
,
F.
Sahli
,
D.
Sacchetto
,
N.
Tétreault
,
B.
Paviet-Salomon
,
S.-J.
Moon
,
C.
Allebé
 et al, “
Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells
,”
ACS Energy Lett.
1
,
474
480
(
2016
).
6.
C.
Battaglia
,
A.
Cuevas
, and
S.
De Wolf
, “
High-efficiency crystalline silicon solar cells: Status and perspectives
,”
Energy Environ. Sci.
9
,
1552
1576
(
2016
).
7.
W. S.
Yang
,
J. H.
Noh
,
N. J.
Jeon
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. Il.
Seok
, “
High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
,”
Science
348
,
1234
1237
(
2015
).
8.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Grätzel
, “
Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency
,”
Energy Environ. Sci.
9
,
1989
1997
(
2016
).
9.
D.
Bi
,
W.
Tress
,
M. I.
Dar
,
P.
Gao
,
J.
Luo
,
C.
Renevier
,
K.
Schenk
,
A.
Abate
,
F.
Giordano
,
J.-P.
Correa-Baena
 et al, “
Efficient luminescent solar cells based on tailored mixed-cation perovskites
,”
Sci. Adv.
2
,
e1501170
(
2016
).
10.
T. Z.
Oo
,
R. D.
Chandra
,
N.
Yantara
,
R. R.
Prabhakar
,
L. H.
Wong
,
N.
Mathews
, and
S. G.
Mhaisalkar
, “
Zinc tin oxide (ZTO) electron transporting buffer layer in inverted organic solar cell
,”
Org. Electron. Phys. Mater. Appl.
13
,
870
874
(
2012
).
11.
M.
Morales-Masis
,
F.
Dauzou
,
Q.
Jeangros
,
A.
Dabirian
,
H.
Lifka
,
R.
Gierth
,
M.
Ruske
,
D.
Moet
,
A.
Hessler-Wyser
, and
C.
Ballif
, “
An indium-free anode for large-area flexible OLEDs: Defect-free transparent conductive zinc tin oxide
,”
Adv. Funct. Mater.
26
,
384
392
(
2016
).
12.
H. Q.
Chiang
,
J. F.
Wager
,
R. L.
Hoffman
,
J.
Jeong
, and
D. A.
Keszler
, “
High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer
,”
Appl. Phys. Lett.
86
,
013503
(
2005
).
13.
M. K.
Jayaraj
,
K. J.
Saji
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
, “
Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application
,”
J. Vac. Sci. Technol. B
26
,
495
501
(
2008
).
14.
F.
Dauzou
,
P.
Bouten
,
A.
Dabirian
,
Y.
Leterrier
,
C.
Ballif
, and
M.
Morales-Masis
, “
Mechanical integrity of hybrid indium-free electrodes for flexible devices
,”
Org. Electron.
35
,
136
141
(
2016
).
15.
M.
Morales-Masis
,
S. M.
Nicolas
,
J.
Holovsky
,
S.
De Wolf
, and
C.
Ballif
, “
Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells
,”
IEEE J. Photovoltaics
5
,
1340
1347
(
2015
).
16.
A.
Fell
,
K. C.
Fong
,
K. R.
McIntosh
,
E.
Franklin
, and
A. W.
Blakers
, “
3-D simulation of interdigitated-back-contact silicon solar cells with Quokka including perimeter losses
,”
IEEE J. Photovoltaics
4
,
1040
1045
(
2014
).
17.
M.
Hermle
,
F.
Feldmann
,
J.
Eisenlohr
,
J.
Benick
,
A.
Richter
,
B.
Lee
,
P.
Stradins
,
A.
Rohatgi
, and
S. W.
Glunz
, “
Approaching efficiencies above 25% with both sides-contacted silicon solar cells
,” in
2015 IEEE 42nd Photovoltaic Specialist Conference PVSC
(
2015
), pp.
8
10
.
18.
M. A.
Green
, “
Commercial progress and challenges for photovoltaics
,”
Nat. Energy
1
,
15015
(
2016
).
19.
X.
Li
,
D.
Bi
,
C.
Yi
,
J.-D.
Décoppet
,
J.
Luo
,
S. M.
Zakeeruddin
,
A.
Hagfeldt
, and
M.
Grätzel
, “
A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells
,”
Science
8060
,
1
10
(
2016
).
20.
M.
Filipic
,
P.
Löper
,
B.
Niesen
,
S.
De Wolf
,
J.
Krc
,
C.
Ballif
, and
M.
Topic
, “
MALI perovskite/silicon tandem solar cells: Characterization based optical simulations
,”
Opt. Express
23
,
A263
A278
(
2015
).
21.
Y.
Jiang
,
I.
Almansouri
,
S.
Huang
,
T.
Young
,
Y.
Li
,
Y.
Peng
,
Q.
Hou
,
L.
Spiccia
,
U.
Bach
,
Y.-B.
Cheng
,
M.
Green
, and
A.
Ho-Bailie
, “
Optical analysis of perovskite/silicon tandem solar cells
,”
J. Mater. Chem. C
4
,
5679
5689
(
2016
).

Supplementary Material

You do not currently have access to this content.