Heat transfer in axially inhomogeneous nanotubes is known to be asymmetric with respect to the direction of transfer. This phenomenon is known as the thermal rectification. We demonstrate that thermal rectification in such nanotubes arises due to the interference of phonons excited in the different parts of the nanotube. It is shown that the rectification does not vanish when the thickness of nanotube increases, but it vanishes as the external diameter of nanotubes decreases to a few nanometers. The understanding of the origin of thermal rectification opens a way to the design of devices controlling heat flows that could perform as efficiently as their electronic counterparts controlling electric currents.

1.
C.
Starr
, “
The copper oxide rectifier
,”
J. Appl. Phys.
7
(
1
),
15
19
(
1936
).
2.
N. A.
Roberts
and
D. G.
Walker
, “
A review of thermal rectification observations and models in solid materials
,”
Int. J. Therm. Sci.
50
,
648
662
(
2011
).
3.
H.
Hoff
, “
Asymmetrical heat conduction in inhomogeneous materials
,”
Physica A
131
(
2
),
449
464
(
1985
).
4.
Y.
Wang
,
A.
Vallabhaneni
,
J.
Hu
,
B.
Qiu
,
Y. P.
Chen
, and
X.
Ruan
, “
Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures
,”
Nano Lett.
14
,
592
596
(
2014
).
5.
G.
Wei
,
G.-H.
Tang
, and
W.-Q.
Tao
, “
Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs
,”
Int. J. Heat Mass Transfer
82
,
429
434
(
2015
).
6.
K.
Joulain
,
Y.
Ezzahri
,
J.
Drevillon
,
J. B.
Rousseau
, and
D.
Meneses
, “
Radiative thermal rectification between SiC and SiO2
,”
Opt. Express
23
(
24
),
A1388
A1397
(
2015
).
7.
C.
Otey
,
W. T.
Lau
, and
S.
Fan
, “
Thermal rectification through vacuum
,”
Phys. Rev. Lett.
104
,
154301
154304
(
2010
).
8.
L. P.
Wang
and
Z. M.
Zhang
, “
Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material
,”
Nanoscale Microscale Thermophys. Eng.
17
,
337
348
(
2013
).
9.
B.
Li
,
L.
Wang
, and
G.
Casati
, “
Thermal diode: Rectification of heat flux
,”
Phys. Rev. Lett.
93
(
18
),
184301
184304
(
2004
).
10.
G.
Wu
and
B.
Li
, “
Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations
,”
Phys. Rev. B
76
(
8
),
085424
(
2007
).
11.
M.-H.
Bae
,
Z.
Li
,
Z.
Aksamija
,
P.
Martin
,
F.
Xiong
,
Zh.-Y.
Ong
,
I.
Knezevic
, and
E.
Pop
, “
Ballistic to diffusive crossover of heat flow in graphene ribbons
,”
Nat. Commun.
4
,
1734
(
2013
).
12.
C. W.
Chang
,
D.
Okawa
,
A.
Majumdar
, and
A.
Zettl
, “
Solid-state thermal rectifier
,”
Science
314
,
1121
1124
(
2006
).
13.
C. W.
Chang
,
W. O.
Han
, and
A.
Zettl
, “
Thermal conductivity of B-C-N and BN nanotubes
,”
J. Vac. Sci. Technol., B
23
(
1883
),
1883
1886
(
2005
).
14.
J.
Hone
,
M.
Whitney
,
C.
Piskoti
, and
A.
Zettl
, “
Thermal conductivity of single-walled carbon nanotubes
,”
Phys. Rev. B
59
,
R2514
R2516
(
1999
).
15.
B. V.
Budaev
and
D. B.
Bogy
, “
Extension of Planck's law of thermal radiation to systems with a steady heat flux
,”
Ann. Phys.
523
(
10
),
791
804
(
2011
).
16.
B. V.
Budaev
and
D. B.
Bogy
, “
Computation of radiative heat transport across a nanoscale vacuum gap
,”
Appl. Phys. Lett.
104
(
6
),
061109
(
2014
).
17.
B. V.
Budaev
and
D. B.
Bogy
, “
Heat transport by phonon tunneling across layered structures used in Heat Assisted Magnetic Recording (HAMR)
,”
J. Appl. Phys.
117
,
104512
(
2015
).
18.
S. S.
Gupta
,
F. G.
Bosco
, and
R. C.
Batra
, “
Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration
,”
Comput. Mater. Sci.
47
,
1049
1059
(
2010
).
You do not currently have access to this content.