Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

1.
D.
Lu
and
Z.
Liu
,
Nat. Commun.
3
,
1205
(
2012
).
2.
X.
Zhang
and
Z.
Liu
,
Nat. Mater.
7
(
6
),
435
441
(
2008
).
3.
J.
Zhu
,
J.
Christensen
,
J.
Jung
,
L.
Martin-Moreno
,
X.
Yin
,
L.
Fok
,
X.
Zhang
, and
F. J.
Garcia-Vidal
,
Nat. Phys.
7
(
1
),
52
55
(
2011
).
4.
H.
Jia
,
M.
Ke
,
R.
Hao
,
Y.
Ye
,
F.
Liu
, and
Z.
Liu
,
Appl. Phys. Lett.
97
(
17
),
173507
(
2010
).
5.
C.
Shen
,
Y.
Xie
,
N.
Sui
,
W.
Wang
,
S. A.
Cummer
, and
Y.
Jing
,
Phys. Rev. Lett.
115
(
25
),
254301
(
2015
).
6.
X.
Zhou
and
G.
Hu
,
Appl. Phys. Lett.
98
(
26
),
263510
(
2011
).
7.
X.
Xu
,
P.
Li
,
X.
Zhou
, and
G.
Hu
,
EPL
109
(
2
),
28001
(
2015
).
8.
J.
Christensen
and
F. J.
García de Abajo
,
Appl. Phys. Lett.
97
(
16
),
164103
(
2010
).
9.
H.
Su
,
X.
Zhou
,
X.
Xu
, and
G.
Hu
,
J. Acoust. Soc. Am.
135
(
4
),
1686
1691
(
2014
).
10.
Z.
Liang
and
J.
Li
,
AIP Adv.
1
(
4
),
041503
(
2011
).
11.
R.
Zhu
,
Y. Y.
Chen
,
Y. S.
Wang
,
G. K.
Hu
, and
G. L.
Huang
,
J. Acoust. Soc. Am.
139
(
6
),
3303
3310
(
2016
).
12.
J.
Li
,
L.
Fok
,
X.
Yin
,
G.
Bartal
, and
X.
Zhang
,
Nat. Mater.
8
(
12
),
931
934
(
2009
).
13.
R.
Fleury
and
A.
Alù
,
Phys. Rev. Lett.
111
(
5
),
055501
(
2013
).
14.
Z.
Liang
and
J.
Li
,
Phys. Rev. Lett.
108
(
11
),
114301
(
2012
).
15.
Y.
Xie
,
B.-I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
,
Phys. Rev. Lett.
110
(
17
),
175501
(
2013
).
16.
T.
Frenzel
,
J. D.
Brehm
,
T.
Bueckmann
,
R.
Schittny
,
M.
Kadic
, and
M.
Wegener
,
Appl. Phys. Lett.
103
(
6
),
061907
(
2013
).
17.
Y.
Xie
,
W.
Wang
,
H.
Chen
,
A.
Konneker
,
B.-I.
Popa
, and
S. A.
Cummer
,
Nat. Commun.
5
,
5553
(
2014
).
18.
K.
Tang
,
C.
Qiu
,
M.
Ke
,
J.
Lu
,
Y.
Ye
, and
Z.
Liu
,
Sci. Rep.
4
,
6517
(
2014
).
19.
Y.
Li
,
X.
Jiang
,
R.-Q.
Li
,
B.
Liang
,
X.-Y.
Zou
,
L.-L.
Yin
, and
J.-C.
Cheng
,
Phys. Rev. Appl.
2
(
6
),
064002
(
2014
).
20.
X.
Cai
,
Q.
Guo
,
G.
Hu
, and
J.
Yang
,
Appl. Phys. Lett.
105
(
12
),
121901
(
2014
).
21.
Y.
Li
and
B. M.
Assouar
,
Appl. Phys. Lett.
108
(
6
),
063502
(
2016
).
You do not currently have access to this content.