The separation of target objects conjugated with magnetic particles is a significant application in biomedicine and clinical diagnosis. Conventional magnetophoresis-based devices use a sheath flow to pre-focus the particles into a single stream and typically operate at a low flow rate. We demonstrate in this work a high-throughput, sheathless, magnetophoretic separation of magnetic and non-magnetic beads in a groove-based channel, and also report on an interesting phenomenon where the same magnetic beads in the same microchannel, but with different setups, has a different particle tracing; a binary mixture of magnetic and non-magnetic beads in a diluted ferrofluid, is then fed into the channel. These magnetic beads are focused near the centreline of the channel by exploiting positive magnetophoresis and microvortices generated by grooves, whereas the non-magnetic beads are focused along the sidewalls of the channel by negative magnetophoresis and hydrophoresis. These magnetic and non-magnetic beads are separated in a wide range of flow rates (up to 80 μl min−1).

1.
S.
Kim
,
S.-I.
Han
,
M.-J.
Park
,
C.-W.
Jeon
,
Y.-D.
Joo
,
I.-H.
Choi
, and
K.-H.
Han
,
Anal. Chem.
85
,
2779
2786
(
2013
).
2.
Y.-H.
Lin
,
C.-C.
Wang
, and
K. F.
Lei
,
Biomed. Microdevices
16
,
199
207
(
2014
).
3.
A. H. C.
Ng
,
U.
Uddayasankar
, and
A. R.
Wheeler
,
Anal. Bioanal. Chem.
397
,
991
1007
(
2010
).
4.
J. H.
Shin
,
M. G.
Lee
,
S.
Choi
, and
J.-K.
Park
,
RSC Adv.
4
,
39140
39144
(
2014
).
5.
M. S.
Kim
,
T. S.
Sim
,
Y. J.
Kim
,
S. S.
Kim
,
H.
Jeong
,
J.-M.
Park
,
H.-S.
Moon
,
S. I.
Kim
,
O.
Gurel
, and
S. S.
Lee
,
Lab Chip
12
,
2874
2880
(
2012
).
6.
C. W.
Shields
 IV
,
L. M.
Johnson
,
L.
Gao
, and
G. P.
López
,
Langmuir
30
,
3923
3927
(
2014
).
7.
T.
Yasukawa
,
M.
Suzuki
,
T.
Sekiya
,
H.
Shiku
, and
T.
Matsue
,
Biosens. Bioelectron.
22
,
2730
2736
(
2007
).
8.
M.
Hejazian
,
W.
Li
, and
N.-T.
Nguyen
,
Lab Chip
15
,
959
970
(
2015
).
9.
T.
Zhu
,
R.
Cheng
,
Y.
Liu
,
J.
He
, and
L.
Mao
,
Microfluid. Nanofluid.
17
,
973
982
(
2014
).
10.
N.
Xia
,
T. P.
Hunt
,
B. T.
Mayers
,
E.
Alsberg
,
G. M.
Whitesides
,
R. M.
Westervelt
, and
D. E.
Ingber
,
Biomed. Microdevices
8
,
299
308
(
2006
).
11.
F.
Del Giudice
,
H.
Madadi
,
M. M.
Villone
,
G.
D'Avino
,
A. M.
Cusano
,
R.
Vecchione
,
M.
Ventre
,
P. L.
Maffettone
, and
P. A.
Netti
,
Lab Chip
15
,
1912
1922
(
2015
).
12.
S.
Choi
,
S.
Song
,
C.
Choi
, and
J. K.
Park
,
Small
4
,
634
641
(
2008
).
13.
P.
Sajeesh
and
A. K.
Sen
,
Microfluid. Nanofluid.
17
,
1
52
(
2014
).
14.
A. D.
Stroock
,
Science
295
,
647
651
(
2002
).
15.
N.
Gadish
and
J.
Voldman
,
Anal. Chem.
78
,
7870
7876
(
2006
).
16.
C. H.
Hsu
,
D.
Di Carlo
,
C.
Chen
,
D.
Irimia
, and
M.
Toner
,
Lab Chip
8
,
2128
2134
(
2008
).
17.
B.
Massey
, Mechanics of fluids (
Chapman & Hall
,
London
,
1989
).
18.
S. A.
Peyman
,
E. Y.
Kwan
,
O.
Margarson
,
A.
Iles
, and
N.
Pamme
,
J. Chromatogr., A
1216
,
9055
9062
(
2009
).
19.
S.
Yan
,
J.
Zhang
,
H.
Chen
,
D.
Yuan
,
G.
Alici
,
H.
Du
,
Y.
Zhu
, and
W.
Li
,
Biomed. Microdevices
18
,
54
(
2016
).
20.
S.
Choi
and
J. K.
Park
,
Anal. Chem.
80
,
3035
3039
(
2008
).
21.
S.
Choi
and
J.-K.
Park
,
Lab Chip
7
,
890
897
(
2007
).
22.
S.
Yan
,
J.
Zhang
,
M.
Li
,
G.
Alici
,
H.
Du
,
R.
Sluyter
, and
W.
Li
,
Sci. Rep.
4
,
5060
(
2014
).
23.
S.
Yan
,
J.
Zhang
,
G.
Alici
,
H.
Du
,
Y.
Zhu
, and
W.
Li
,
Lab Chip
14
,
2993
3003
(
2014
).
24.
X.
Lu
,
L.
Zhu
,
R.-M.
Hua
, and
X.
Xuan
,
Appl. Phys. Lett.
107
,
264102
(
2015
).

Supplementary Material

You do not currently have access to this content.