We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor–liquid–solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (∼3 V), current (∼40 μA), and power (∼130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.

1.
R. F.
Freitas
and
W. W.
Wilcke
, “
Storage-class memory: The next storage system technology
,”
IBM J. Res. Dev.
52
(
4.5
),
439
(
2008
).
2.
G. W.
Burr
,
B. N.
Kurdi
,
J. C.
Scott
,
C. H.
Lam
,
K.
Gopalakrishnan
, and
R. S.
Shenoy
, “
Overview of candidate device technologies for storage-class memory
,”
IBM J. Res. Dev. 52(4.
5
),
449
464
(
2008
).
3.
D. J.
Wouters
,
R.
Waser
, and
M.
Wuttig
, “
Phase-change and redox-based resistive switching memories
,”
Proc. IEEE
103
(
8
),
1274
1288
(
2015
).
4.
S.
Raoux
,
F.
Xiong
,
M.
Wuttig
, and
E.
Pop
, “
Phase change materials and phase change memory
,”
MRS Bull.
39
(
8
),
703
710
(
2014
).
5.
M.
Boniardi
,
A.
Redaelli
,
C.
Cupeta
,
F.
Pellizzer
,
L.
Crespi
,
G.
D'Arrigo
,
A. L.
Lacaita
, and
G.
Servalli
, “
Optimization metrics for phase change memory (PCM) cell architectures
,” in
2014 IEEE International Electron Devices Meeting
(
2014
), pp. 29.
1
.
1
29
.1.4.
6.
E.
Mafi
,
X.
Tao
,
W.
Zhu
,
Y.
Gao
,
C.
Wang
, and
Y.
Gu
, “
Generation and the role of dislocations in single-crystalline phase-change In2Se3 nanowires under electrical pulses
,”
Nanotechnology
27
(
33
),
335704
(
2016
).
7.
P.
Nukala
,
R.
Agarwal
,
X.
Qian
,
M. H.
Jang
,
S.
Dhara
,
K.
Kumar
,
A. T. C.
Johnson
,
J.
Li
, and
R.
Agarwal
, “
Direct observation of metal-insulator transition in single-crystalline germanium telluride nanowire memory devices prior to amorphization
,”
Nano Lett.
14
(
4
),
2201
2209
(
2014
).
8.
P.
Nukala
,
C.-C.
Lin
,
R.
Composto
, and
R.
Agarwal
, “
Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices
,”
Nat. Commun.
7
,
10482
(
2016
).
9.
S.-H.
Lee
,
Y.
Jung
, and
R.
Agarwal
, “
Highly scalable non-volatile and ultra-low-power phase-change nanowire memory
,”
Nat. Nanotechnol.
2
(
10
),
626
630
(
2007
).
10.
D.
Yu
,
S.
Brittman
,
J. S.
Lee
,
A. L.
Falk
, and
H.
Park
, “
Minimum voltage for threshold switching in nanoscale phase-change memory
,”
Nano Lett.
8
(
10
),
3429
3433
(
2008
).
11.
L.
Men
,
F.
Jiang
, and
F.
Gan
, “
Short-wavelength phase-change optical data storage in In-Sb-Te alloy films
,”
Mater. Sci. Eng. B
47
(
1
),
18
22
(
1997
).
12.
Y.
Maeda
,
H.
Andoh
,
I.
Ikuta
, and
H.
Minemura
, “
Reversible phase-change optical data storage in InSbTe alloy films
,”
J. Appl. Phys.
64
(
4
),
1715
1719
(
1988
).
13.
Y. T.
Kim
and
S.-I.
Kim
, “
Comparison of thermal stabilities between Ge-Sb-Te and In-Sb-Te phase change materials
,”
Appl. Phys. Lett.
103
(
12
),
121906
(
2013
).
14.
E. T.
Kim
,
J. Y.
Lee
, and
Y. T.
Kim
, “
Investigation of electrical characteristics of the In3 Sb1Te2 ternary alloy for application in phase-change memory
,”
Phys. Status Solidi RRL
3
(
4
),
103
105
(
2009
).
15.
M.
Choi
,
H.
Choi
,
S.
Kim
,
J.
Ahn
, and
Y. T.
Kim
, “
Lattice distortion in In3SbTe2 phase change material with substitutional Bi
,”
Sci. Rep.
5
,
12867
(
2015
).
16.
J.-K.
Ahn
,
K.-W.
Park
,
H.-J.
Jung
, and
S.-G.
Yoon
, “
Phase-change InSbTe nanowires grown in situ at low temperature by metal-organic chemical vapor deposition
,”
Nano Lett.
10
(
2
),
472
477
(
2010
).
17.
S.
Selmo
,
S.
Cecchi
,
R.
Cecchini
,
C.
Wiemer
,
M.
Fanciulli
,
E.
Rotunno
,
L.
Lazzarini
, and
M.
Longo
, “
MOCVD growth and structural characterization of In-Sb-Te nanowires
,”
Phys. Status Solidi A
213
(
2
),
335
338
(
2016
); and ICSD database, Fachinformations- zentrum, Karlsruhe, file no. 44643.
18.
A. J.
O'Reilly
,
C.
Francis
, and
N. J.
Quitoriano
, “
Gold nanoparticle deposition on Si by destabilising gold colloid with HF
,”
J. Colloid Interface Sci.
370
(
1
),
46
50
(
2012
).
19.
W.
Simbürger
,
D.
Johnsson
, and
M.
Stecher
, “
High current TLP characterisation: An effective tool for the development of semiconductor devices and ESD protection solutions
,” in
ARMMS RF & Microwave Society
(
2012
).
20.
A. L.
Lacaita
and
A.
Redaelli
, “
The race of phase change memories to nanoscale storage and applications
,”
Microelectron. Eng.
109
,
351
356
(
2013
).
21.
H.-S. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J. P.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phase change memory
,”
Proc. IEEE
98
(
12
),
2201
2227
(
2010
).
22.
D.
Ielmini
and
Y.
Zhang
, “
Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices
,”
J. Appl. Phys.
102
(
5
),
054517
(
2007
).
23.
A.
Calderoni
,
M.
Ferro
,
E.
Varesi
,
P.
Fantini
,
M.
Rizzi
, and
D.
Ielmini
, “
Understanding overreset transition in phase-change memory characteristics
,”
IEEE Electron Device Lett.
33
(
9
),
1267
1269
(
2012
).
24.
M. H. R.
Lankhorst
,
B. W. S. M. M.
Ketelaars
, and
R. A. M.
Wolters
, “
Low-cost and nanoscale non-volatile memory concept for future silicon chips
,”
Nat. Mater.
4
(
4
),
347
352
(
2005
).
25.
I.
Hwang
,
Y.-J.
Cho
,
M.-J.
Lee
, and
M.-H.
Jo
, “
The role of contact resistance in GeTe and Ge2Sb2Te5 nanowire phase change memory reset switching current
,”
Appl. Phys. Lett.
106
(
19
),
193106
(
2015
).
26.
S.
Meister
,
S.
Kim
,
J. J.
Cha
,
H.-S. P.
Wong
, and
Y.
Cui
, “
In situ transmission electron microscopy observation of nanostructural changes in phase-change memory
,”
ACS Nano
5
(
4
),
2742
2748
(
2011
).
27.
Y.
Choi
,
I.
Song
,
M.-H.
Park
,
H.
Chung
,
S.
Chang
,
B.
Cho
,
J.
Kim
,
Y.
Oh
,
D.
Kwon
,
J.
Sunwoo
,
J.
Shin
,
Y.
Rho
,
C.
Lee
,
M. G.
Kang
,
J.
Lee
,
Y.
Kwon
,
S.
Kim
,
J.
Kim
,
Y.-J.
Lee
,
Q.
Wang
,
S.
Cha
,
S.
Ahn
,
H.
Horii
,
J.
Lee
,
K.
Kim
,
H.
Joo
,
K.
Lee
,
Y.-T.
Lee
,
J.
Yoo
, and
G.
Jeong
, “
A 20 nm 1.8V 8Gb PRAM with 40MB/s program bandwidth
,” in
2012 IEEE International Solid-State Circuits Conference
(
2012
), pp.
46
48
.
28.
M.
Boniardi
and
A.
Redaelli
, “
Phase change memory: Device scaling and challenges for material engineering in the GeSbTe compound system
,”
Microelectron. Eng.
137
,
1
4
(
2015
).
You do not currently have access to this content.