Copper (Cu) dry etching is demonstrated using a narrow-gap hydrogen plasma generated at 13.3 kPa (100 Torr) for applications in the Cu wiring technology of integrated circuits. A localized hydrogen plasma is generated around the apex of a fine pipe electrode. The Cu etching can be observed only when the process gas contains hydrogen, and the etching rates decrease with decreased hydrogen concentration. The plasma heating effect owing to plasma localization is negligible for the Cu etching because no etching occurs in the presence of pure N2 plasma whose volume is almost equal to that of the pure H2 plasma. Furthermore, the influences of physical sputtering and vacuum ultraviolet irradiation on the Cu etching are confirmed to be insignificant by exposing the samples to rare-gas plasma. The maximum Cu etching rate of 500 nm/min can be achieved at a stage temperature of 0 °C. However, the Cu etching rate has no obvious dependence on the stage temperature in a range from −20 to 330 °C. In contrast, the etching rates for Si and SiO2 at a stage temperature of 0 °C are 100 μm/min and 50 nm/min, respectively. The Cu etching rate is 10 times higher than that of SiO2, which implies that this etching technique has potential applications for Cu wiring on an SiO2 layer. The Cu surface etched by the hydrogen plasma is roughened and exhibits many round pits and bumps, which seems to be owing to excessive incorporation of the diffused hydrogen in the Cu bulk.

1.
N.
Murata
,
N.
Saito
,
K.
Tamakawa
,
K.
Suzuki
, and
H.
Miura
,
J. Electron. Packag.
137
,
031001
(
2015
).
2.
J.
Li
,
Y.
Liu
,
Y.
Pana
, and
X.
Lua
,
Appl. Surf. Sci.
293
,
287
(
2014
).
3.
S.
Choia
,
D. A.
Dornfelda
, and
F. M.
Doyle
,
J. Electrochem. Soc.
160
,
H653
(
2013
).
4.
V. H.
Nguyen
,
R.
Daamen
, and
R.
Hoofman
,
Microelectron. Eng.
76
,
95
(
2004
).
5.
X.
Liu
,
Y.
Liu
,
Y.
Liang
,
H.
Liu
,
Z.
Zhao
, and
B.
Gao
,
Thin Solid Films
520
,
400
(
2011
).
6.
S.
Lee
and
Y.
Kuo
,
J. Electrochem. Soc.
148
,
G524
(
2001
).
7.
A. M.
Efremov
and
V. I.
Svettsov
,
Russ. Microelectron.
31
,
179
(
2002
).
8.
C.-C.
Lin
and
Y.
Kuo
,
J. Appl. Phys.
111
,
064909
(
2012
).
9.
F.
Wu
,
G.
Levitin
, and
D. W.
Hess
,
ACS Appl. Mater. Interfaces
2
,
2175
(
2010
).
10.
F.
Wu
,
G.
Levitin
, and
D. W.
Hess
,
J. Vac. Sci. Technol. B
29
,
011013
(
2011
).
11.
F.
Wu
,
G.
Levitin
, and
D. W.
Hess
,
J. Electrochem. Soc.
159
,
H121
(
2012
).
12.
T.-S.
Choi
and
D. W.
Hess
,
ECS J. Solid State Sci. Technol.
4
,
N3084
(
2015
).
13.
H.
Ohmi
,
H.
Kakiuchi
,
Y.
Hamaoka
, and
K.
Yasutake
,
J. Appl. Phys.
102
,
023302
(
2007
).
14.
H.
Ohmi
,
H.
Kakiuchi
, and
K.
Yasutake
,
J. Appl. Phys.
118
,
045301
(
2015
).
15.
A. P.
Webb
and
S.
Veprek
,
Chem. Phys. Lett.
62
,
173
(
1979
).
16.
S.
Veprek
,
C.
Wang
, and
M. G. J.
Veprek-Heijman
,
J. Vac. Sci. Technol. A
26
,
313
(
2008
).
17.
H.
Ohmi
,
T.
Hori
,
T.
Mori
,
H.
Kakiuchi
, and
K.
Yasutake
,
J. Phys. D: Appl. Phys.
44
,
235202
(
2011
).
18.
T.
Yamada
,
H.
Ohmi
,
K.
Okamoto
,
H.
Kakiuchi
, and
K.
Yasutake
,
Jpn. J. Appl. Phys., Part 1
51
,
10NA09
(
2012
).
19.
J.
Abrefah
and
D. R.
Olander
,
Surf. Sci.
209
,
291
(
1989
).
20.
S. M.
Gates
,
R. R.
Kunz
, and
C. M.
Greenlief
,
Surf. Sci.
207
,
364
(
1989
).
21.
A.
Kant
and
K. A.
Moon
,
High Temp. Sci.
11
,
52
(
1979
).
22.
R.
Burtovyy
,
E.
Utzig
, and
M.
Tkacz
,
Thermochim. Acta
363
,
157
(
2000
).
23.
J. Y.
Seto
,
Z.
Morbi
,
F.
Charron
,
S. K.
Lee
,
P. F.
Bernath
, and
R. J.
Le Roy
,
J. Chem. Phys.
110
,
11756
(
1999
).
24.
T.
Gans
,
C. C.
Lin
,
V. S.
der Gathen
, and
H. F.
Döbele
,
J. Phys. D: Appl. Phys.
34
,
L39
(
2001
).
25.
Y.
Fukai
,
M.
Mizutani
,
S.
Yokota
,
M.
Kanazawa
,
Y.
Miura
, and
T.
Watanabe
,
J. Alloys Compd.
356–357
,
270
(
2003
).
26.
Y.
Fukai
and
N.
Okuma
,
Jpn. J. Appl. Phys., Part 2
32
,
L1256
(
1993
).
27.
Å.
Martinsson
and
R.
Sandström
,
J. Mater. Sci.
47
,
6768
(
2012
).
28.
M. J.
Murphy
and
A.
Hodgson
,
J. Chem. Phys.
108
,
4199
(
1998
).
29.
T.
Tanabe
,
Y.
Yamanishi
,
K.
Sawada
, and
S.
Imoto
,
J. Nucl. Mater.
123
,
1568
(
1984
).
30.
G. D.
Kubiak
,
G. O.
Sitz
, and
R. N.
Zare
,
J. Chem. Phys.
83
,
2538
(
1985
).
31.
H.
Osono
,
T.
Kino
,
Y.
Kurokawa
, and
Y.
Fukai
,
J. Alloys Compd.
231
,
41
(
1995
).
You do not currently have access to this content.