The magnetocaloric effect (MCE) in an Fe48Rh52 alloy and Sm0.6Sr0.4MnO3 manganite was studied in cyclic magnetic fields. The adiabatic temperature change in the Fe48Rh52 alloy for a magnetic field change (ΔB) of 8 T and a frequency (f) of 0.13 Hz reaches the highest value of (ΔTad) of −20.2 K at 298 K. The magnitude of the MCE in Sm0.6Sr0.4MnO3 reaches ΔTad = 6.1 K at the same magnetic field change at 143 K. The temperature regions, where a strong MCE is exhibited in an alternating magnetic field, are bounded in both compounds. In the case of the Fe48Rh52 alloy, the temperature range for this phenomenon is bounded above by the ferromagnetic to antiferromagnetic transition temperature in the zero field condition during cooling. In the case of the Sm0.6Sr0.4MnO3 manganite, the temperature range for the MCE is bounded below by the ferromagnetic-paramagnetic transition temperature in zero field during heating. The presence of these phase boundaries is a consequence of the existence of areas of irreversible magnetic-field-induced phase transitions. It is found that the effect of long-term action of thousands of cycles of magnetization/demagnetization degrades the magnetocaloric properties of the Fe48Rh52 alloy. This can be explained by the gradual decrease in the size of the ferromagnetic domains and increasing role of the domain walls due to giant magnetostriction at the ferromagnetic to antiferromagnetic transition temperature. The initial magnetocaloric properties can be restored by heating of the material above their Curie temperature.

1.
J. R.
Gómez
,
R. F.
Garcia
,
A. D. M.
Catoira
, and
M. R.
Gómez
, “
Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration
,”
Renewable Sustainable Energy Rev.
17
,
74
82
(
2013
).
2.
J.
Liu
,
T.
Gottschall
,
K. P.
Skokov
,
J. D.
Moore
, and
O.
Gutfleisch
, “
Giant magnetocaloric effect driven by structural transitions
,”
Nat. Mater.
11
,
620
626
(
2012
).
3.
K.
Skokov
,
K.-H.
Muller
,
J.
Moore
,
J.
Liu
,
A. Y.
Karpenkov
,
M.
Krautz
, and
O.
Gutfleisch
, “
Influence of thermal hysteresis and field cycling on the magnetocaloric effect in LaFe11.6Si1.4
,”
J. Alloys Compd.
552
,
310
317
(
2013
).
4.
V.
Basso
, “
The magnetocaloric effect at the first-order magneto-elastic phase transition
,”
J. Phys.: Condens. Matter
23
,
226004
(
2011
).
5.
V. I.
Zverev
,
A. M.
Saletsky
,
R. R.
Gimaev
,
A. M.
Tishin
,
T.
Miyanaga
, and
J. B.
Staunton
, “
Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6
,”
Appl. Phys. Lett.
108
,
192405
(
2016
).
6.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
, “
Giant magnetocaloric effect in Gd5Si2Ge2
,”
Phys. Rev. Lett.
78
,
4494
4497
(
1997
).
7.
V. K.
Pecharsky
and
K. A.
Gschneidner
, “
Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290k
,”
Appl. Phys. Lett.
70
,
3299
3301
(
1997
).
8.
H.
Wada
and
Y.
Tanabe
, “
Giant magnetocaloric effect of MnAs1–xSbx
,”
Appl. Phys. Lett.
79
,
3302
3304
(
2001
).
9.
O.
Tegus
,
E.
Brück
,
K.
Buschow
, and
F.
De Boer
, “
Transition-metal-based magnetic refrigerants for room-temperature applications
,”
Nature
415
,
150
152
(
2002
).
10.
F.-X.
Hu
,
B.-G.
Shen
,
J.-R.
Sun
, and
G.-H.
Wu
, “
Large magnetic entropy change in a heusler alloy Ni52.6Mn23.1Ga24.3 single crystal
,”
Phys. Rev. B
64
,
132412
(
2001
).
11.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
, “
Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys
,”
Nat. Mater.
4
,
450
454
(
2005
).
12.
K. G.
Sandeman
,
R.
Daou
,
S.
Özcan
,
J. H.
Durrell
,
N. D.
Mathur
, and
D. J.
Fray
, “
Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1–xGex
,”
Phys. Rev. B
74
,
224436
(
2006
).
13.
N. T.
Trung
,
L.
Zhang
,
L.
Caron
,
K. H. J.
Buschow
, and
E.
Brück
, “
Giant magnetocaloric effects by tailoring the phase transitions
,”
Appl. Phys. Lett.
96
,
172504
(
2010
).
14.
A.
Fujita
,
S.
Fujieda
,
Y.
Hasegawa
, and
K.
Fukamichi
, “
Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fex Si1–x)13 compounds and their hydrides
,”
Phys. Rev. B
67
,
104416
(
2003
).
15.
A.
Zakharov
,
A.
Kadomtseva
,
R.
Levitin
, and
E.
Ponyatovskii
, “
Magnetic and magnetoelastic properties of a metamagnetic iron-rhodium alloy
,”
Sov. Phys. JETP-USSR
19
,
1348
1353
(
1964
).
16.
G.
Shirane
,
R.
Nathans
, and
C.
Chen
, “
Magnetic moments and unpaired spin densities in the Fe–Rh alloys
,”
Phys. Rev.
134
,
A1547
(
1964
).
17.
S.
Nikitin
,
G.
Myalikgulyev
,
A.
Tishin
,
M.
Annaorazov
,
K.
Asatryan
, and
A.
Tyurin
, “
The magnetocaloric effect in Fe49Rh51 compound
,”
Phys. Lett. A
148
,
363
366
(
1990
).
18.
E.
Stern-Taulats
,
A.
Gràcia-Condal
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Pramanick
,
S.
Majumdar
, and
L.
Mañosa
, “
Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51
,”
Appl. Phys. Lett.
107
,
152409
(
2015
).
19.
A. I.
Abramovich
,
A. V.
Michurin
,
O. Y.
Gorbenko
, and
A. R.
Kaul'
, “
Giant magnetocaloric effect near the curie temperature in the Sm0.6Sr0.4MnO3 manganite
,”
Phys. Solid State
43
,
715
717
(
2001
).
20.
I. D.
Luzyanin
,
V. A.
Ryzhov
,
D. Y.
Chernyshov
,
A. I.
Kurbakov
,
V. A.
Trounov
,
A. V.
Lazuta
,
V. P.
Khavronin
,
I. I.
Larionov
, and
S. M.
Dunaevsky
, “
Crystal structure and magnetic properties of the unique jahn-teller system 154Sm0.6Sr0.4MnO3
,”
Phys. Rev. B
64
,
094432
(
2001
).
21.
A.
Kurbakov
, “
Electronic, structural and magnetic phase diagram of Sm1–xSrx MnO3 manganites
,”
J. Magn. Magn. Mater.
322
,
967
972
(
2010
).
22.
S. B.
Abdulvagidov
,
A. M.
Aliev
,
A. G.
Gamzatov
,
V. I.
Nizhankovskiĭ
,
H.
Mödge
, and
O. Y.
Gorbenko
, “
Specific heat of Sm0.55Sr0.45MnO3 manganite in magnetic fields up to 15 t: An anomalous critical behavior of the ferromagnet in magnetic field and the observation of a tricritical point
,”
JETP Lett.
84
,
31
34
(
2006
).
23.
S.
Giri
,
P.
Dasgupta
,
A.
Poddar
,
A.
Nigam
, and
T.
Nath
, “
Field induced ferromagnetic phase transition and large magnetocaloric effect in Sm0.55Sr0.45MnO3 phase separated manganites
,”
J. Alloys Compd.
582
,
609
616
(
2014
).
24.
A. M.
Aliev
, “
Direct magnetocaloric effect measurement technique in alternating magnetic fields
,” preprint arXiv:1409.6898.
25.
A.
Aliev
,
A.
Batdalov
,
L.
Khanov
,
V.
Koledov
,
V.
Shavrov
,
I.
Tereshina
, and
S.
Taskaev
, “
Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 hz
,”
J. Alloys Compd.
676
,
601
605
(
2016
).
26.
K.
Gschneidner
, Jr.
,
Y.
Mudryk
, and
V.
Pecharsky
, “
On the nature of the magnetocaloric effect of the first-order magnetostructural transition
,”
Scr. Mater.
67
,
572
577
(
2012
).
27.
R.
Caballero-Flores
,
V.
Snchez-Alarcos
,
V.
Recarte
,
J. I.
Prez-Landazbal
, and
C.
Gmez-Polo
, “
Latent heat contribution to the direct magnetocaloric effect in Ni–Mn–Ga shape memory alloys with coupled martensitic and magnetic transformations
,”
J. Phys. D: Appl. Phys.
49
,
205004
(
2016
).
28.
A. P.
Kamantsev
,
V. V.
Koledov
,
A. V.
Mashirov
,
E. T.
Dilmieva
,
V. G.
Shavrov
,
J.
Cwik
,
I. S.
Tereshina
,
M. V.
Lyange
,
V. V.
Khovaylo
,
G.
Porcari
, and
M.
Topic
, “
Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields
,”
Bull. Russ. Acad. Sci. Phys.
79
,
1086
1088
(
2015
).
29.
E.
Stern-Taulats
,
A.
Planes
,
P.
Lloveras
,
M.
Barrio
,
J.-L.
Tamarit
,
S.
Pramanick
,
S.
Majumdar
,
C.
Frontera
, and
L.
Mañosa
, “
Barocaloric and magnetocaloric effects in Fe49Rh51
,”
Phys. Rev. B
89
,
214105
(
2014
).
30.
A.
Chirkova
,
K.
Skokov
,
L.
Schultz
,
N.
Baranov
,
O.
Gutfleisch
, and
T.
Woodcock
, “
Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions
,”
Acta Mater.
106
,
15
21
(
2016
).
31.
T.
Kihara
,
X.
Xu
,
W.
Ito
,
R.
Kainuma
, and
M.
Tokunaga
, “
Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn
,”
Phys. Rev. B
90
,
214409
(
2014
).
32.
V.
Khovaylo
,
K.
Skokov
,
O.
Gutfleisch
,
H.
Miki
,
T.
Takagi
,
T.
Kanomata
,
V.
Koledov
,
V.
Shavrov
,
G.
Wang
,
E.
Palacios
, et al, “
Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys
,”
Phys. Rev. B
81
,
214406
(
2010
).
You do not currently have access to this content.