A wide variety of apparently contradictory piezoresistance (PZR) behaviors have been reported in p-type silicon nanowires (SiNW), from the usual positive bulk effect to anomalous (negative) PZR and giant PZR. The origin of such a range of diverse phenomena is unclear, and consequently so too is the importance of a number of parameters including SiNW type (top down or bottom up), stress concentration, electrostatic field effects, or surface chemistry. Here, we observe all these PZR behaviors in a single set of nominally p-type, 110 oriented, top-down SiNWs at uniaxial tensile stresses up to 0.5 MPa. Longitudinal π-coefficients varying from −800 × 10−11 Pa−1 to 3000 × 10−11 Pa−1 are measured. Micro-Raman spectroscopy on chemically treated nanowires reveals that stress concentration is the principal source of giant PZR. The sign and an excess PZR similar in magnitude to the bulk effect are related to the chemical treatment of the SiNW.

1.
A. C. H.
Rowe
,
J. Mater. Res.
29
,
731
(
2014
).
2.
C. S.
Smith
,
Phys. Rev.
94
,
42
(
1954
).
3.
S.
Thompson
,
G.
Sun
,
Y.
Choi
, and
T.
Nishida
,
IEEE Trans. Electron Devices
53
,
1010
(
2006
).
4.
H.
Du
and
R.
Bogue
,
Sens. Rev.
27
,
7
(
2007
).
5.
R.
He
and
P.
Yang
,
Nat. Nanotechnol.
1
,
42
(
2006
).
6.
A.
Lugstein
,
M.
Steinmair
,
A.
Steiger
,
H.
Kosina
, and
E.
Bertagnolli
,
Nano Lett.
10
,
3204
(
2010
).
7.
P.
Neuzil
,
C.
Wong
, and
J.
Reboud
,
Nano Lett.
10
,
1248
(
2010
).
8.
T.-K.
Kang
,
Appl. Phys. Lett.
100
,
163501
(
2012
).
9.
T.-K.
Kang
,
Nanotechnology
23
,
475203
(
2012
).
10.
G.
Dorda
,
J. Appl. Phys.
42
,
2053
(
1971
).
11.
A. C. H.
Rowe
,
Nat. Nanotechnol.
3
,
311
(
2008
).
12.
H.
Jang
,
J.
Kim
,
M.-S.
Kim
,
J.
Cho
,
H.
Choi
, and
J.-H.
Ahn
,
Nano Lett.
14
,
6942
(
2014
).
13.
K.
Winkler
,
E.
Bertagnolli
, and
A.
Lugstein
,
Nano Lett.
15
,
1780
(
2015
).
14.
T.
Toriyama
,
D.
Funai
, and
S.
Sugiyama
,
J. Appl. Phys.
93
,
561
(
2003
).
15.
K.
Reck
,
J.
Richter
,
O.
Hansen
, and
E.
Thomsen
, in
Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems
(
2008
), pp.
717
720
.
16.
J. S.
Milne
,
A. C. H.
Rowe
,
S.
Arscott
, and
C.
Renner
,
Phys. Rev. Lett.
105
,
226802
(
2010
).
17.
T.
Barwicz
,
L.
Klein
,
S.
Koester
, and
H.
Hamann
,
Appl. Phys. Lett.
97
,
023110
(
2010
).
18.
A.
Koumela
,
D.
Mercier
,
C.
Dupré
,
G.
Jourdan
,
C.
Marcoux
,
E.
Ollier
,
S. T.
Purcell
, and
L.
Duraffourg
,
Nanotechnology
22
,
395701
(
2011
).
19.
U. K.
Bhaskar
,
T.
Pardoen
,
V.
Passi
, and
J.-P.
Raskin
,
Appl. Phys. Lett.
102
,
031911
(
2013
).
20.
R. E.
Peterson
and
R.
Plunkett
,
J. Appl. Mech.
42
,
248
(
1975
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4955403 for further details on the Raman experiments and on the data analysis, as well as a discussion of the sample fabrication process and the finite element estimations of b.
22.
R.
Ossikovski
,
Q.
Nguyen
,
G.
Picardi
, and
J.
Schreiber
,
J. Appl. Phys.
103
,
093525
(
2008
).
23.
J. I.
Pankove
,
D. E.
Carlson
,
J. E.
Berkeyheiser
, and
R. O.
Wance
,
Phys. Rev. Lett.
51
,
2224
(
1983
).
24.
L.
Huang
and
W.
Lau
,
Appl. Phys. Lett.
60
,
1108
(
1992
).
25.
H.
Angermann
,
Appl. Surf. Sci.
312
,
3
(
2014
).
26.
G. D.
Yuan
,
Y. B.
Zhou
,
C. S.
Guo
,
W. J.
Zhang
,
Y. B.
Tang
,
Y. Q.
Li
,
Z. H.
Chen
,
Z. B.
He
,
X. J.
Zhang
,
P. F.
Wang
 et al,
ACS Nano
4
,
3045
(
2010
).
27.
A.
Hamada
and
E.
Takeda
,
IEEE Electron Device Lett.
15
,
31
(
1994
).
28.
V.
Schmidt
,
S.
Senz
, and
U.
Gösele
,
Appl. Phys. A
86
,
187
(
2007
).
29.
Y.
Choi
,
T.
Nishida
, and
S.
Thompson
,
Appl. Phys. Lett.
92
,
173507
(
2008
).

Supplementary Material

You do not currently have access to this content.