A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm2 and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K.

1.
A.
Pavelchek
,
R. G.
Trissel
,
J.
Plante
, and
S.
Umbrasas
, “
Long-wave infrared (10-μm) free-space optical communication system
,”
Proc. SPIE
5160
,
247
(
2004
).
2.
J. M.
Kahn
, “
Secure free-space optical communication between moving platforms
,” in
The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2002)
(
IEEE
,
2002
), Vol. 452, p.
455
.
3.
J. R.
Minch
,
D. R.
Gervais
, and
D. J.
Townsend
, “
Adaptive Transceivers for Mobile Free-Space Optical Communications
,” in
2006 IEEE Military Communications Conference (MILCOM 2006)
(
IEEE
,
2006
), pp.
1
5
.
4.
E.
Luzhanskiy
,
F.-S.
Choa
,
S.
Merritt
,
A.
Yu
, and
M.
Krainak
,
Comparative Analysis of QCL MWIR and SWIR Communication with PPM Signals, Arlington, Virginia
(
Optical Society of America
,
2015
), Paper No. JT5A.7.
5.
A.
Hood
,
A.
Evans
, and
M.
Razeghi
, “
Type-II superlattices and quantum cascade lasers for MWIR and LWIR free-space communications
,”
Proc. SPIE
6900
,
690005
(
2008
).
6.
E.
Luzhansky
,
F.-S.
Choa
,
S.
Merritt
,
A.
Yu
, and
M.
Krainak
, “
Mid-IR free-space optical communication with quantum cascade lasers
,”
Proc. SPIE
9465
,
946512
(
2015
).
7.
F.
Capasso
,
W. T.
Tsang
,
C. G.
Bethea
,
A. L.
Hutchinson
, and
B. F.
Levine
,
Appl. Phys. Lett.
42
,
93
(
1983
).
8.
J. C.
Campbell
and
K.
Ogawa
,
J. Appl. Phys.
53
,
1203
(
1982
).
9.
L. Y.
Leu
,
J. T.
Gardner
, and
S. R.
Forrest
,
J. Appl. Phys.
69
,
1052
(
1991
).
10.
V.
Fathipour
,
O. G.
Memis
,
S. J.
Jang
,
R. L.
Brown
,
I. H.
Nia
, and
H.
Mohseni
,
IEEE J. Sel. Top. Quantum Electron.
20
,
65
(
2014
).
11.
V.
Fathipour
,
S. J.
Jang
,
I. H.
Nia
, and
H.
Mohseni
,
Appl. Phys. Lett.
106
,
021116
(
2015
).
12.
S.
Mallick
,
K.
Banerjee
,
S.
Ghosh
,
E.
Plis
,
J. B.
Rodriguez
,
S.
Krishna
, and
C.
Grein
,
Appl. Phys. Lett.
91
,
241111
(
2007
).
13.
K.
Banerjee
,
S.
Ghosh
,
S.
Mallick
,
E.
Plis
,
S.
Krishna
, and
C.
Grein
,
Appl. Phys. Lett.
94
,
201107
(
2009
).
14.
O. G.
Memis
,
A.
Katsnelson
,
S.-C.
Kong
,
H.
Mohseni
,
M.
Yan
,
S.
Zhang
,
T.
Hossain
,
N.
Jin
, and
I.
Adesida
,
Opt. Express
16
,
12701
(
2008
).
15.
H.
Kamitsuna
,
Y.
Matsuoka
,
S.
Yamahata
, and
N.
Shigekawa
,
IEEE Trans. Microwave Theory Tech.
49
,
1921
(
2001
).
16.
G. A.
Sai-Halasz
,
R.
Tsu
, and
L.
Esaki
,
Appl. Phys. Lett.
30
,
651
(
1977
).
17.
M.
Razeghi
, U.S. patent 6864552 (
2005
).
18.
N.
Binh-Minh
,
C.
Guanxi
,
H.
Minh-Anh
, and
M.
Razeghi
,
IEEE J. Quantum Electron.
47
,
686
(
2011
).
19.
G. G.
Zegrya
and
A. D.
Andreev
,
Appl. Phys. Lett.
67
,
2681
(
1995
).
20.
B.-M.
Nguyen
,
D.
Hoffman
,
P.-Y.
Delaunay
,
E. K.-W.
Huang
,
M.
Razeghi
, and
J.
Pellegrino
,
Appl. Phys. Lett.
93
,
163502
(
2008
).
21.
Y.
Wei
,
J.
Bae
,
A.
Gin
,
A.
Hood
,
M.
Razeghi
,
G. J.
Brown
, and
M.
Tidrow
,
J. Appl. Phys.
94
,
4720
(
2003
).
22.
Y.
Wei
,
A.
Gin
,
M.
Razeghi
, and
G. J.
Brown
,
Appl. Phys. Lett.
81
,
3675
(
2002
).
23.
A. M.
Hoang
,
G.
Chen
,
A.
Haddadi
,
S.
Abdollahi Pour
, and
M.
Razeghi
,
Appl. Phys. Lett.
100
,
211101
(
2012
).
24.
S. A.
Pour
,
E. K.
Huang
,
G.
Chen
,
A.
Haddadi
,
B.-M.
Nguyen
, and
M.
Razeghi
,
Appl. Phys. Lett.
98
,
143501
(
2011
).
25.
A.
Hood
,
D.
Hoffman
,
B.-M.
Nguyen
,
P.-Y.
Delaunay
,
E.
Michel
, and
M.
Razeghi
,
Appl. Phys. Lett.
89
,
093506
(
2006
).
You do not currently have access to this content.