A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm2 and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K.
References
1.
A.
Pavelchek
, R. G.
Trissel
, J.
Plante
, and S.
Umbrasas
, “Long-wave infrared (10-μm) free-space optical communication system
,” Proc. SPIE
5160
, 247
(2004
).2.
J. M.
Kahn
, “Secure free-space optical communication between moving platforms
,” in The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2002)
(IEEE
, 2002
), Vol. 452, p. 455
.3.
J. R.
Minch
, D. R.
Gervais
, and D. J.
Townsend
, “Adaptive Transceivers for Mobile Free-Space Optical Communications
,” in 2006 IEEE Military Communications Conference (MILCOM 2006)
(IEEE
, 2006
), pp. 1
–5
.4.
E.
Luzhanskiy
, F.-S.
Choa
, S.
Merritt
, A.
Yu
, and M.
Krainak
, Comparative Analysis of QCL MWIR and SWIR Communication with PPM Signals, Arlington, Virginia
(Optical Society of America
, 2015
), Paper No. JT5A.7.5.
A.
Hood
, A.
Evans
, and M.
Razeghi
, “Type-II superlattices and quantum cascade lasers for MWIR and LWIR free-space communications
,” Proc. SPIE
6900
, 690005
(2008
).6.
E.
Luzhansky
, F.-S.
Choa
, S.
Merritt
, A.
Yu
, and M.
Krainak
, “Mid-IR free-space optical communication with quantum cascade lasers
,” Proc. SPIE
9465
, 946512
(2015
).7.
F.
Capasso
, W. T.
Tsang
, C. G.
Bethea
, A. L.
Hutchinson
, and B. F.
Levine
, Appl. Phys. Lett.
42
, 93
(1983
).8.
J. C.
Campbell
and K.
Ogawa
, J. Appl. Phys.
53
, 1203
(1982
).9.
L. Y.
Leu
, J. T.
Gardner
, and S. R.
Forrest
, J. Appl. Phys.
69
, 1052
(1991
).10.
V.
Fathipour
, O. G.
Memis
, S. J.
Jang
, R. L.
Brown
, I. H.
Nia
, and H.
Mohseni
, IEEE J. Sel. Top. Quantum Electron.
20
, 65
(2014
).11.
V.
Fathipour
, S. J.
Jang
, I. H.
Nia
, and H.
Mohseni
, Appl. Phys. Lett.
106
, 021116
(2015
).12.
S.
Mallick
, K.
Banerjee
, S.
Ghosh
, E.
Plis
, J. B.
Rodriguez
, S.
Krishna
, and C.
Grein
, Appl. Phys. Lett.
91
, 241111
(2007
).13.
K.
Banerjee
, S.
Ghosh
, S.
Mallick
, E.
Plis
, S.
Krishna
, and C.
Grein
, Appl. Phys. Lett.
94
, 201107
(2009
).14.
O. G.
Memis
, A.
Katsnelson
, S.-C.
Kong
, H.
Mohseni
, M.
Yan
, S.
Zhang
, T.
Hossain
, N.
Jin
, and I.
Adesida
, Opt. Express
16
, 12701
(2008
).15.
H.
Kamitsuna
, Y.
Matsuoka
, S.
Yamahata
, and N.
Shigekawa
, IEEE Trans. Microwave Theory Tech.
49
, 1921
(2001
).16.
G. A.
Sai-Halasz
, R.
Tsu
, and L.
Esaki
, Appl. Phys. Lett.
30
, 651
(1977
).17.
M.
Razeghi
, U.S. patent 6864552 (2005
).18.
N.
Binh-Minh
, C.
Guanxi
, H.
Minh-Anh
, and M.
Razeghi
, IEEE J. Quantum Electron.
47
, 686
(2011
).19.
G. G.
Zegrya
and A. D.
Andreev
, Appl. Phys. Lett.
67
, 2681
(1995
).20.
B.-M.
Nguyen
, D.
Hoffman
, P.-Y.
Delaunay
, E. K.-W.
Huang
, M.
Razeghi
, and J.
Pellegrino
, Appl. Phys. Lett.
93
, 163502
(2008
).21.
Y.
Wei
, J.
Bae
, A.
Gin
, A.
Hood
, M.
Razeghi
, G. J.
Brown
, and M.
Tidrow
, J. Appl. Phys.
94
, 4720
(2003
).22.
Y.
Wei
, A.
Gin
, M.
Razeghi
, and G. J.
Brown
, Appl. Phys. Lett.
81
, 3675
(2002
).23.
A. M.
Hoang
, G.
Chen
, A.
Haddadi
, S.
Abdollahi Pour
, and M.
Razeghi
, Appl. Phys. Lett.
100
, 211101
(2012
).24.
S. A.
Pour
, E. K.
Huang
, G.
Chen
, A.
Haddadi
, B.-M.
Nguyen
, and M.
Razeghi
, Appl. Phys. Lett.
98
, 143501
(2011
).25.
A.
Hood
, D.
Hoffman
, B.-M.
Nguyen
, P.-Y.
Delaunay
, E.
Michel
, and M.
Razeghi
, Appl. Phys. Lett.
89
, 093506
(2006
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.