The theoretical diffraction-limit of resolution for ultrasound imaging has recently been bypassed in-vitro and in-vivo. However, in the context of ultrasound therapy, the precision of therapeutic beams remains bound to the half-wavelength limit. By combining acoustic vaporization of composite droplets and rapid ultrasound monitoring, we demonstrate that the ultrasound drug-delivery can be restricted to a subwavelength zone. Moreover, two release zones closer than the wavelength/4 can be distinguished both optically and through ultrafast ultrasound localization microscopy. This proof-of-concept let us envision the possibility to treat specific tissues more precisely without compromising on the penetration depth of the ultrasound wave.

1.
G.
ter Haar
,
Prog. Biophys. Mol. Biol.
93
(
1
),
111
(
2007
).
2.
A.
Bouakaz
,
A.
Zeghimi
, and
A. A.
Doinikov
, “
Sonoporation, concept and mechanisms
,” in
Therapeutic Ultrasound
(
Springer International Publishing
,
2016
), p.
175
.
3.
A.
Burgess
and
K.
Hynynen
, “
Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system
,” in
Therapeutic Ultrasound
(
Springer International Publishing
,
2016
), p.
293
.
4.
O.
Couture
,
J.
Foley
,
N. F.
Kassel
,
B.
Larrat
, and
J.-F.
Aubry
,
Transl. Cancer Res.
3
(
5
),
494
(
2014
).
5.
O.
Couture
,
B.
Besson
,
G.
Montaldo
,
M.
Fink
, and
M.
Tanter
, “
Microbubble ultrasound super-localization imaging (MUSLI)
,” in
IEEE Ultrasonics Symposium
(
2011
), p.
1285
1287
.
6.
C.
Errico
,
J.
Pierre
,
S.
Pezet
,
Y.
Desailly
,
Z.
Lenkei
,
O.
Couture
, and
M.
Tanter
,
Nature
527
(
7579
),
499
(
2015
).
7.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
L.-J.
Schwartz
, and
H. F.
Hess
,
Science
313
(
5793
),
1642
(
2006
).
8.
O.
Couture
,
M.
Faivre
,
N.
Pannacci
,
A.
Babataheri
,
V.
Servois
,
P.
Tabeling
, and
M.
Tanter
,
Med. Phys.
38
(
2
),
1116
(
2011
).
9.
O.
Couture
,
A.
Urban
,
A.
Bretagne
,
L.
Martinez
,
M.
Tanter
, and
P.
Tabeling
,
Med. Phys.
39
(
8
),
5229
(
2012
).
10.
O. D.
Kripfgans
,
J. B.
Fowlkes
,
D. L.
Miller
,
O. P.
Eldevik
, and
P. L.
Carson
,
Ultrasound Med. Biol.
26
(
7
),
1177
(
2000
).
11.
C.
Cohen
,
R.
Giles
,
V.
Sergeyeva
,
N.
Mittal
,
P.
Tabeling
,
D.
Zerrouki
,
J.
Baudry
,
J.
Bibette
, and
N.
Bremond
,
Microfluid. Nanofluid.
17
,
959
966
(
2014
).
12.
J. A.
Jensen
and
N. B.
Svendsen
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
39
(
2
),
262
(
1992
).
13.
M. G.
Gustafsson
,
Proc. Natl. Acad. Sci. U. S. A.
102
(
37
),
13081
(
2005
).
14.
W. W.
Roberts
,
T. L.
Hall
,
K.
Ives
,
J. S.
Wolf
,
J. B.
Fowlkes
, and
C. A.
Cain
,
J. Urol.
175
(
2
),
734
(
2006
).
15.
M.
Emmer
,
A.
Van Wamel
,
D. E.
Goertz
, and
N.
De Jong
,
Ultrasound Med. Biol.
33
(
6
),
941
949
(
2007
).
16.
K. I.
Kawabata
,
A.
Yoshizawa
,
R.
Asami
,
T.
Azuma
,
H.
Yoshikawa
,
H.
Watanabe
,
K.
Sasaki
,
K.
Hirata
, and
S. I.
Umemura
, in
IEEE Ultrasonics Symposium
(
2006
), p.
517
.
17.
P. S.
Sheeran
,
S. H.
Luois
,
L. B.
Mullin
,
T. O.
Matsunaga
, and
P. A.
Dayton
,
Biomaterials
33
(
11
),
3262
(
2012
).
18.
M.
Tanter
and
M.
Fink
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
1
),
102
(
2014
).
You do not currently have access to this content.