This study aims to expand the aeroelastic unstable range of a circular cylinder for improving the efficiency of a vortex-induced vibration (VIV)-based wind energy harvester. The kinetic energy of the harvester is provided by flow-induced vibration of a circular cylinder. Two small-diameter cylindrical rods were attached on two sides of the circular cylinder parallel to the cylinder axis and symmetrical to the stagnation line at a series of circumferential locations. This was inspired by rain-wind-induced vibrations of stay-cables of cable-stayed bridges. It was found that attaching two small-diameter cylindrical rods at the circumferential location θ = 60° significantly expands the aeroelastic unstable range for the circular cylinder. The wind energy harvester with this configuration harnesses the wind energy beyond the VIV onset wind speed and is sustained over the range of wind speed. Therefore, this configuration possesses a dramatic superiority over a plain circular cylinder as the kinetic source of a wind energy harvester.

1.
F. K.
Shaikh
and
S.
Zeadally
,
Renewable Sustainable Energy Rev.
55
,
1041
(
2016
).
2.
Y. K.
Tan
and
S. K.
Panda
,
IEEE Trans. Power Electron.
26
(
1
),
38
(
2011
).
3.
Y. K.
Tan
and
S. K.
Panda
,
IEEE Trans. Instrum. Meas.
60
(
4
),
1367
(
2011
).
4.
J.
Sirohi
and
R.
Mahadik
,
J. Intell. Mater. Syst. Struct.
22
(
18
),
2215
(
2011
).
5.
A.
Abdelkefi
,
Int. J. Eng. Sci.
100
,
112
(
2016
).
6.
C.
Grouthier
,
S.
Michelin
,
R.
Bourguet
,
Y.
Modarres-Sadeghi
, and
E.
De Langre
,
J. Fluids Struct.
49
,
427
(
2014
).
7.
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
,
Nonlinear Dyn.
77
(
3
),
967
(
2014
).
8.
A.
Mehmood
,
A.
Abdelkefi
,
M. R.
Hajj
,
A. H.
Nayfeh
,
I.
Akhtar
, and
A. O.
Nuhait
,
J. Sound Vib.
332
(
19
),
4656
(
2013
).
9.
H. L.
Dai
,
A.
Abdelkefi
, and
L.
Wang
,
J. Intell. Mater. Syst. Struct.
25
(
14
),
1861
(
2014
).
10.
H. L.
Dai
,
A.
Abdelkefi
,
Y.
Yang
, and
L.
Wang
,
Appl. Phys. Lett.
108
(
5
),
053902
(
2016
).
11.
A.
Barrero-Gil
,
S.
Pindado
, and
S.
Avila
,
Appl. Math. Model
36
(
7
),
3153
(
2012
).
12.
A. S.
Holmes
,
Micro Energy Harvesting
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2015
), p.
297
.
13.
T.
Cheng
,
Y.
Wang
,
F.
Qin
,
Z.
Song
,
X.
Lu
,
G.
Bao
, and
X.
Zhao
,
Appl. Phys. Lett.
109
(
7
),
073902
(
2016
).
14.
J.
Sirohi
and
R.
Mahadik
,
J. Vib. Acoust.
134
(
1
),
011009
(
2012
).
15.
A.
Abdelkefi
,
Z.
Yan
, and
M. R.
Hajj
,
J. Intell. Mater. Syst. Struct.
25
(
2
),
246
(
2014
).
16.
F.
Ewere
,
G.
Wang
, and
B.
Cain
,
Smart Mater. Struct.
23
(
10
),
104012
(
2014
).
17.
Y.
Yang
,
L.
Zhao
, and
L.
Tang
,
Appl. Phys. Lett.
102
(
6
),
064105
(
2013
).
18.
A.
Abdelkefi
,
Z.
Yan
, and
M. R.
Hajj
,
Smart Mater. Struct.
22
(
2
),
025016
(
2013
).
19.
A.
Abdelkefi
,
J. M.
Scanlon
,
E.
McDowell
, and
M. R.
Hajj
,
Appl. Phys. Lett.
103
(
3
),
033903
(
2013
).
20.
A.
Abdelkefi
,
M. R.
Hajj
, and
A. H.
Nayfeh
,
Smart Mater. Struct.
22
(
1
),
015014
(
2013
).
21.
A.
Abdelkefi
,
M. R.
Hajj
, and
A. H.
Nayfeh
,
Nonlinear Dyn.
70
(
2
),
1355
(
2012
).
22.
H.-J.
Jung
and
S.-W.
Lee
,
Smart Mater. Struct.
20
(
5
),
055022
(
2011
).
23.
A.
Barrero-Gil
,
G.
Alonso
, and
A.
Sanz-Andres
,
J. Sound Vib.
329
(
14
),
2873
(
2010
).
24.
G.
Tomasini
,
S.
Giappino
, and
A.
Costa
,
Proc. SPIE
9799
,
979901
(
2016
).
25.
A. H.
Alhadidi
and
M. F.
Daqaq
,
Appl. Phys. Lett.
109
(
3
),
033904
(
2016
).
26.
M.
Bryant
and
E.
Garcia
,
J. Vib. Acoust.
133
(
1
),
011010
(
2011
).
27.
O.
Doaré
and
S.
Michelin
,
J. Fluids Struct.
27
(
8
),
1357
(
2011
).
28.
J. M.
McCarthy
,
S.
Watkins
,
A.
Deivasigamani
, and
S. J.
John
,
J. Sound Vib.
361
,
355
(
2016
).
29.
J. M.
McCarthy
,
S.
Watkins
,
A.
Deivasigamani
,
S. J.
John
, and
F.
Coman
,
J. Wind. Eng. Ind. Aerodyn.
136
,
101
(
2015
).
30.
S.
Li
,
J.
Yuan
, and
H.
Lipson
,
J. Appl. Phys.
109
(
2
),
026104
(
2011
).
31.
Z.
Peng
and
Q.
Zhu
,
Phys. Fluids
21
(
12
),
123602
(
2009
).
32.
Q.
Zhu
and
Z.
Peng
,
Phys. Fluids
21
(
3
),
033601
(
2009
).
33.
A.
Erturk
,
W. G. R.
Vieira
,
C.
De Marqui
, and
D. J.
Inman
,
Appl. Phys. Lett.
96
(
18
),
184103
(
2010
).
34.
S.-D.
Kwon
,
Appl. Phys. Lett.
97
(
16
),
164102
(
2010
).
35.
M. Y.
Zakaria
,
M. Y.
Al-Haik
, and
M. R.
Hajj
,
Appl. Phys. Lett.
107
(
2
),
023901
(
2015
).
36.
G.
Hu
,
K. T.
Tse
, and
K. C. S.
Kwok
,
Appl. Phys. Lett.
108
(
12
),
123901
(
2016
).
37.
C. H. K.
Williamson
and
R.
Govardhan
,
Annu. Rev. Fluid Mech.
36
,
413
(
2004
).
38.
M. P.
Païdoussis
,
S. J.
Price
, and
E.
de Langre
,
Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
(
Cambridge University Press
,
2010
).
39.
Y.
Hikami
and
N.
Shiraishi
,
J. Wind. Eng. Ind. Aerodyn.
29
(
1
),
409
(
1988
).
40.
M.
Matsumoto
,
N.
Shiraishi
, and
H.
Shirato
,
J. Wind. Eng. Ind. Aerodyn.
43
(
1
),
2011
(
1992
).
41.
M.
Matsumoto
,
T.
Saitoh
,
M.
Kitazawa
,
H.
Shirato
, and
T.
Nishizaki
,
J. Wind. Eng. Ind. Aerodyn.
57
(
2
),
323
(
1995
).
42.
M.
Gu
,
J. Wind. Eng. Ind. Aerodyn.
97
(
7–8
),
381
(
2009
).
43.
A. H. P.
Van der Burgh
and
Hartono
,
Int. J. Non Linear Mech.
39
(
1
),
93
(
2004
).
44.
M.
Matsumoto
,
T.
Yagi
,
M.
Goto
, and
S.
Sakai
,
J. Wind. Eng. Ind. Aerodyn.
91
(
1–2
),
1
(
2003
).
45.
S.
Zhan
,
Y. L.
Xu
,
H. J.
Zhou
, and
K. M.
Shum
,
J. Wind. Eng. Ind. Aerodyn.
96
(
12
),
2438
(
2008
).
46.
A.
Laneville
and
M.
Matsumoto
, in
13th International Conference on Wind Engineering
, edited by
C.
Geurts
(
Amsterdam
,
Netherlands
,
2011
).
47.
P.
Stücke
and
I.
Teipel
, in
Separated Flows and Jets: IUTAM-Symposium, Novosibirsk, USSR 9–13, July 1990
, edited by
V. V.
Kozlov
and
A. V.
Dovgal
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1991
), pp.
751
.
48.
G. V.
Parkinson
and
J. D.
Smith
,
Quarterly J. Mech. Appl. Math.
17
(
2
),
225
(
1964
).
You do not currently have access to this content.