Quantum spin Hall insulators (QSHIs), also known as two-dimensional topological insulators, have emerged as an unconventional class of quantum states with insulating bulk and conducting edges originating from nontrivial inverted band structures and have been proposed as a platform for exploring spintronics applications and exotic quasiparticles related to the spin-helical edge modes. Despite theoretical proposals for various materials, however, experimental demonstrations of QSHIs have so far been limited to two systems—HgTe/CdTe and InAs/GaSb—both of which are lattice-matched semiconductor heterostructures. Here, we report transport measurements in yet another realization of a band-inverted heterostructure as a QSHI candidate—InAs/InxGa1−xSb with lattice mismatch. We show that the compressive strain in the InxGa1−xSb layer enhances the band overlap and energy gap. Consequently, high bulk resistivity, two orders of magnitude higher than for InAs/GaSb, is obtained deep in the band-inverted regime. The strain also enhances bulk Rashba spin-orbit splitting, leading to an unusual situation where the Fermi level crosses only one spin branch for electronlike and holelike bands over a wide density range. These properties make this system a promising platform for robust QSHIs with unique spin properties and demonstrate the strain to be an important ingredient for tuning spin-orbit interaction.

1.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
(
4
),
3045
3067
(
2010
).
2.
X.-L.
Qi
and
S.-C.
Zhang
,
Rev. Mod. Phys.
83
(
4
),
1057
1110
(
2011
).
3.
Y.
Ando
,
J. Phys. Soc. Jpn.
82
(
10
),
102001
(
2013
).
4.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
(
14
),
146802
(
2005
).
5.
B. A.
Bernevig
and
S.-C.
Zhang
,
Phys. Rev. Lett.
96
(
10
),
106802
(
2006
).
6.
B. A.
Bernevig
,
T. L.
Hughes
, and
S. C.
Zhang
,
Science
314
(
5806
),
1757
1761
(
2006
).
7.
M.
Konig
,
S.
Wiedmann
,
C.
Brune
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X. L.
Qi
, and
S. C.
Zhang
,
Science
318
(
5851
),
766
770
(
2007
).
8.
M.
König
,
H.
Buhmann
,
L. W.
Molenkamp
,
T.
Hughes
,
C.-X.
Liu
,
X.-L.
Qi
, and
S.-C.
Zhang
,
J. Phys. Soc. Jpn.
77
(
3
),
031007
(
2008
).
9.
J.
Alicea
,
Rep. Prog. Phys.
75
(
7
),
076501
(
2012
).
10.
C. W. J.
Beenakker
,
Annu. Rev. Condens. Matter Phys.
4
(
1
),
113
136
(
2013
).
11.
S.
Murakami
,
Phys. Rev. Lett.
97
(
23
),
236805
(
2006
).
12.
C.
Liu
,
T.
Hughes
,
X.-L.
Qi
,
K.
Wang
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
100
(
23
),
236601
(
2008
).
13.
C.-C.
Liu
,
W.
Feng
, and
Y.
Yao
,
Phys. Rev. Lett.
107
(
7
),
076802
(
2011
).
14.
C.
Weeks
,
J.
Hu
,
J.
Alicea
,
M.
Franz
, and
R.
Wu
,
Phys. Rev. X
1
(
2
),
021001
(
2011
).
15.
X.
Qian
,
J.
Liu
,
L.
Fu
, and
J.
Li
,
Science
346
(
6215
),
1344
1347
(
2014
).
16.
F.-C.
Chuang
,
L.-Z.
Yao
,
Z.-Q.
Huang
,
Y.-T.
Liu
,
C.-H.
Hsu
,
T.
Das
,
H.
Lin
, and
A.
Bansil
,
Nano Lett.
14
(
5
),
2505
2508
(
2014
).
17.
J.-J.
Zhou
,
W.
Feng
,
C.-C.
Liu
,
S.
Guan
, and
Y.
Yao
,
Nano Lett.
14
(
8
),
4767
4771
(
2014
).
18.
H.
Weng
,
X.
Dai
, and
Z.
Fang
,
Phys. Rev. X
4
(
1
),
011002
(
2014
).
19.
Y.
Ma
,
Y.
Dai
,
L.
Kou
,
T.
Frauenheim
, and
T.
Heine
,
Nano Lett.
15
(
2
),
1083
1089
(
2015
).
20.
I.
Knez
,
R.-R.
Du
, and
G.
Sullivan
,
Phys. Rev. Lett.
107
(
13
),
136603
(
2011
).
21.
K.
Suzuki
,
Y.
Harada
,
K.
Onomitsu
, and
K.
Muraki
,
Phys. Rev. B
87
(
23
),
235311
(
2013
).
22.
L.
Du
,
I.
Knez
,
G.
Sullivan
, and
R.-R.
Du
,
Phys. Rev. Lett.
114
(
9
),
096802
(
2015
).
23.
F.
Couëdo
,
H.
Irie
,
K.
Suzuki
,
K.
Onomitsu
, and
K.
Muraki
,
Phys. Rev. B
94
(
3
),
035301
(
2016
).
24.
I.
Knez
,
R.-R.
Du
, and
G.
Sullivan
,
Phys. Rev. Lett.
109
(
18
),
186603
(
2012
).
25.
V. S.
Pribiag
,
A. J. A.
Beukman
,
F.
Qu
,
M. C.
Cassidy
,
C.
Charpentier
,
W.
Wegscheider
, and
L. P.
Kouwenhoven
,
Nat. Nanotechnol.
10
(
7
),
593
597
(
2015
).
26.
F.
Qu
,
A. J. A.
Beukman
,
S.
Nadj-Perge
,
M.
Wimmer
,
B.-M.
Nguyen
,
W.
Yi
,
J.
Thorp
,
M.
Sokolich
,
A. A.
Kiselev
,
M. J.
Manfra
,
C. M.
Marcus
, and
L. P.
Kouwenhoven
,
Phys. Rev. Lett.
115
(
3
),
036803
(
2015
).
27.
K.
Suzuki
,
Y.
Harada
,
K.
Onomitsu
, and
K.
Muraki
,
Phys. Rev. B
91
(
24
),
245309
(
2015
).
28.
I.
Knez
,
R. R.
Du
, and
G.
Sullivan
,
Phys. Rev. B
81
(
20
),
201301
(
2010
).
29.
D. L.
Smith
and
C.
Mailhiot
,
J. Appl. Phys.
62
(
6
),
2545
2548
(
1987
).
30.
F. H.
Pollak
and
M.
Cardona
,
Phys. Rev.
172
(
3
),
816
837
(
1968
).
31.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
(
11
),
5815
5875
(
2001
).
32.
Y. A.
Bychkov
and
E. I.
Rashba
,
Pis'ma Zh. Eksp. Teor. Fiz.
39
(
2
),
66
69
(
1984
).
33.
I.
Knez
, Ph.D. thesis,
Rice University
,
2012
.
34.
W.
Pan
,
J. F.
Klem
,
J. K.
Kim
,
M.
Thalakulam
,
M. J.
Cich
, and
S. K.
Lyo
,
Appl. Phys. Lett.
102
(
3
),
033504
(
2013
).
35.
F.
Nichele
,
A. N.
Pal
,
P.
Pietsch
,
T.
Ihn
,
K.
Ensslin
,
C.
Charpentier
, and
W.
Wegscheider
,
Phys. Rev. Lett.
112
(
3
),
036802
(
2014
).
36.
T.
Li
,
P.
Wang
,
H.
Fu
,
L.
Du
,
K. A.
Schreiber
,
X.
Mu
,
X.
Liu
,
G.
Sullivan
,
G. A.
Csáthy
,
X.
Lin
, and
R.-R.
Du
,
Phys. Rev. Lett.
115
(
13
),
136804
(
2015
).
37.
L.
Du
,
W.
Lou
,
K.
Chang
,
G.
Sullivan
, and
R.-R.
Du
, preprint arXiv:1508.04509 (
2015
).
38.
Y.
Naveh
and
B.
Laikhtman
,
Europhys. Lett.
55
(
4
),
545
(
2001
).
39.
V.
Brosco
,
L.
Benfatto
,
E.
Cappelluti
, and
C.
Grimaldi
,
Phys. Rev. Lett.
116
(
16
),
166602
(
2016
).

Supplementary Material

You do not currently have access to this content.