Transducers for laser generated focused ultrasound can achieve photoacoustic waves with several hundred bars positive pressure in water. Previous designs employed concave glass substrates decorated with catalytically grown carbon nanotubes. Here, we show that arbitrarily shaped surfaces made of polymers and printed with 3d printers allow the generation of waveforms with complex temporal and spatial shape. We first present three different polymer materials together with a simplified deposition technique. This is achieved by painting layers of carbon-nanotube powder and polydimethylsiloxane. Together with a clear resin (Formlabs Photopolymer Clear Resin), pressure amplitudes of 300 bar peak positive were obtained. With the flexibility of polymer substrates, complex waveforms can be generated. This is demonstrated with a stepped surface which launches two waves separated by 0.8 μs. Detailed pressure measurements are supported with shadowgraphy images and simulations of the wave.

1.
H. W.
Baac
,
J. G.
Ok
,
A.
Maxwell
,
K.-T.
Lee
,
Y.-C.
Chen
,
A. J.
Hart
,
Z.
Xu
,
E.
Yoon
, and
L. J.
Guo
, “
Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy
,”
Sci. Rep.
2
,
989
(
2012
).
2.
H. W.
Baac
,
J.
Frampton
,
J. G.
Ok
,
S.
Takayama
, and
L. J.
Guo
, “
Localized micro-scale disruption of cells using laser-generated focused ultrasound
,”
J. Biophotonics
6
,
905
910
(
2013
).
3.
H. W.
Baac
,
T.
Lee
,
J. G.
Ok
,
T.
Hall
, and
L. J.
Guo
, “
Dual-frequency focused ultrasound using optoacoustic and piezoelectric transmitters for single-pulsed free-field cavitation in water
,”
Appl. Phys Lett.
103
,
234103
(
2013
).
4.
H. W.
Baac
,
J. G.
Ok
,
T.
Lee
, and
L. J.
Guo
, “
Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation
,”
Nanoscale
7
,
14460
14468
(
2015
).
5.
H. W.
Baac
,
T.
Lee
, and
L. J.
Guo
, “
Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms
,”
Biomed. Opt. Express
4
,
1442
1450
(
2013
).
6.
T.
Lee
,
J. G.
Ok
,
L. J.
Guo
, and
H. W.
Baac
, “
Low f-number photoacoustic lens for tight ultrasonic focusing and free-field micro-cavitation in water
,”
Appl. Phys. Lett.
108
,
104102
(
2016
).
7.
X.
Zou
,
N.
Wu
,
Y.
Tian
, and
X.
Wang
, “
Broadband miniature fiber optic ultrasound generator
,”
Opt. Express
22
,
18119
18127
(
2014
).
8.
B.-Y.
Hsieh
,
J.
Kim
,
J.
Zhu
,
S.
Li
,
X.
Zhang
, and
X.
Jiang
, “
A laser ultrasound transducer using carbon nanofibers-polydimethylsiloxane composite thin film
,”
Appl. Phys. Lett
106
,
021902
(
2015
).
9.
W.-Y.
Chang
,
W.
Huang
,
J.
Kim
,
S.
Li
, and
X.
Jiang
, “
Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers
,”
Appl. Phys. Lett
107
,
161903
(
2015
).
10.
R. J.
Colchester
,
C. A.
Mosse
,
D. S.
Bhachu
,
J. C.
Bear
,
C. J.
Carmalt
,
I. P.
Parkin
,
B. E.
Treeby
,
I.
Papakonstantinou
, and
A. E.
Desjardins
, “
Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings
,”
Appl. Phys. Lett
104
,
173502
(
2014
).
11.
J.
Micallef
,
Beginning Design for 3D Printing
(
Apress
,
2015
).
12.
L.
Jonušauskas
,
E.
Skliutas
,
S.
Butkus
, and
M.
Malinauskas
, “
Custom on demand 3d printing of functional microstructures
,”
Lith. J. Phys.
55
(
3
),
227
236
(
2015
).
13.
M.
Frenz
,
G.
Paltauf
, and
H.
Schmidt-Kloiber
, “
Laser-generated cavitation in absorbing liquid induced by acoustic diffraction
,”
Phys. Rev. Lett.
76
,
3546
(
1996
).
14.
M.
Mohammadzadeh
,
S. R.
Gonzalez-Avila
,
Y. C.
Wan
,
X.
Wang
,
H.
Zheng
, and
C.-D.
Ohl
, “
Photoacoustic shock wave emission and cavitation from structured optical fiber tips
,”
Appl. Phys. Lett.
108
,
024101
(
2016
).
15.
L.
Tong
,
C.
Lim
, and
Y.
Li
, “
Generation of high-intensity focused ultrasound by carbon nanotube opto-acoustic lens
,”
J. Appl. Mech.
81
,
081014
(
2014
).

Supplementary Material

You do not currently have access to this content.