An immunosensor is proposed based on the indium-gallium-zinc-oxide (IGZO) electric-double-layer thin-film transistor (EDL TFT) with a separating extended gate. The IGZO EDL TFT has a field-effect mobility of 24.5 cm2 V−1 s−1 and an operation voltage less than 1.5 V. The sensors exhibit the linear current response to label-free target immune molecule in the concentrations ranging from 1.6 to 368 × 10−15 g/ml with a detection limit of 1.6 × 10−15 g/ml (0.01 fM) under an ultralow operation voltage of 0.5 V. The IGZO TFT component demonstrates a consecutive assay stability and recyclability due to the unique structure with the separating extended gate. With the excellent electrical properties and the potential for plug-in-card-type multifunctional sensing, extended-gate-type IGZO EDL TFTs can be promising candidates for the development of a label-free biosensor for public health applications.

1.
N.
Bojorge Ramírez
,
A. M.
Salgado
, and
B.
Valdman
,
Braz. J. Chem. Eng.
26
,
227
(
2009
).
2.
M.
Rezki
,
A.
Belaidi
,
T.
Benabdallah
, and
M.
Ayad
,
Int. J. Adv. Res. Eng. Technol.
3
,
145
(
2012
).
3.
T.
Minamiki
,
T.
Minami
,
R.
Kurita
,
O.
Niwa
,
S.
Wakida
,
K.
Fukuda
,
D.
Kumaki
, and
S.
Tokito
,
Materials
7
,
6843
(
2014
).
4.
M.
Magliulo
,
A.
Mallardi
,
M. Y.
Mulla
,
S.
Cotrone
,
B. R.
Pistillo
,
P.
Favia
,
I.
Vikholm-Lundin
,
G.
Palazzo
, and
L.
Torsi
,
Adv. Mater.
25
,
2090
(
2013
).
5.
P. I.
Reyes
,
C.-J.
Ku
,
Z.
Duan
,
Y.
Lu
,
A.
Solanki
, and
K.-B.
Lee
,
Appl. Phys. Lett.
98
,
173702
(
2011
).
6.
C.-S.
Lee
,
S. K.
Kim
, and
M.
Kim
,
Sensors
9
,
7111
(
2009
).
7.
T.
Minamiki
,
T.
Minami
,
R.
Kurita
,
O.
Niwa
,
S.
Wakida
,
K.
Fukuda
,
D.
Kumaki
, and
S.
Tokito
,
Appl. Phys. Lett.
104
,
243703
(
2014
).
8.
C.-P.
Chen
,
A.
Ganguly
,
C.-Y.
Lu
,
T.-Y.
Chen
,
C.-C.
Kuo
,
R.-S.
Chen
,
W.-H.
Tu
,
W. B.
Fischer
,
K.-H.
Chen
, and
L.-C.
Chen
,
Anal. Chem.
83
,
1938
(
2011
).
9.
K.
Takahashi
,
T.
Sato
,
R.
Yamamoto
,
H.
Shishido
,
T.
Isa
,
S.
Eguchi
,
H.
Miyake
,
Y.
Hirakata
,
S.
Yamazaki
,
R.
Sato
,
H.
Matsumoto
, and
N.
Yazaki
,
J. Soc. Inf. Disp.
23
,
600
(
2015
).
10.
11.
B.
Hekmatshoar
,
IEEE Trans. Electron Devices
62
,
3524
(
2015
).
12.
R. F. P.
Martins
,
A.
Ahnood
,
N.
Correia
,
L. M. N. P.
Pereira
,
R.
Barros
,
P. M. C. B.
Barquinha
,
R.
Costa
,
I. M. M.
Ferreira
,
A.
Nathan
, and
E. E. M. C.
Fortunato
,
Adv. Funct. Mater.
23
,
2153
(
2013
).
13.
Y.-C.
Shen
,
C.-H.
Yang
,
S.-W.
Chen
,
S.-H.
Wu
,
T.-L.
Yang
, and
J.-J.
Huang
,
Biosens. Bioelectron.
54
,
306
(
2014
).
14.
J.-D.
Oh
,
D.-K.
Kim
,
J.-W.
Kim
,
Y.-G.
Ha
, and
J.-H.
Choi
,
J. Mater. Chem. C
4
,
807
(
2016
).
15.
N.
Liu
,
Y.
Liu
,
L.
Zhu
,
Y.
Shi
, and
Q.
Wan
,
IEEE Electron Device Lett.
35
,
482
(
2014
).
16.
G.
Wu
,
H.
Zhang
,
L.
Zhu
,
M.
Dai
,
P.
Cui
, and
Q.
Wan
,
IEEE Electron Device Lett.
33
,
531
(
2012
).
17.
H.
Zhang
,
L.
Guo
, and
Q.
Wan
,
J. Mater. Chem. C
1
,
2781
(
2013
).
18.
L. Q.
Zhu
,
J.
Sun
,
G. D.
Wu
,
H. L.
Zhang
, and
Q.
Wan
,
Nanoscale
5
,
1980
(
2013
).
19.
L. Q.
Zhu
,
J. Y.
Chao
, and
H.
Xiao
,
Appl. Phys. Lett.
105
,
243508
(
2014
).
20.
H. T.
Yuan
,
H.
Shimotani
,
A.
Tsukazaki
,
A.
Ohtomo
,
M.
Kawasaki
, and
Y.
Iwasa
,
J. Am. Chem. Soc.
132
,
6672
(
2010
).
You do not currently have access to this content.