We investigate an unsynthesized perovskite-type oxyhydride KTiO2H using first-principles calculations. Based on a comparison of the total energy with some other configurations of hydrogen and non-perovskite-type structures, the presented structure is found to be more stable. The optimized structure of KTiO2H is orthorhombic and its polarization of 101μC/cm2 is comparable to that of PbTiO3. The density of states is similar to that of the other perovskite-type oxides, except that it is constant near the top of the valence band. At the top of the valence band, the band dispersion is small in the direction perpendicular to the TiOH plane, which is reflective of the two-dimensionality of the electronic state. Furthermore, the electronic structure is compared with that for KTiO2F, and it is found that the dispersionless states can be regarded as antibonding states of in-plane oxygen and hydrogen and that the low electron affinity of hydrogen is important to prevent overlap with other states.

1.
Y.
Akishige
,
J. Phys. Soc. Jpn.
75
,
073704
(
2006
).
2.
M. A.
Hayward
,
E. J.
Cussen
,
J. B.
Claridge
,
M.
Bieringer
,
M. J.
Rosseinsky
,
C. J.
Kiely
,
S. J.
Blundell
,
I. M.
Marshall
, and
F. L.
Pratt
,
Science
295
,
1882
(
2002
).
3.
C. A.
Bridges
,
G. R.
Darling
,
M. A.
Hayward
, and
M. J.
Rosseinsky
,
J. Am. Chem. Soc.
127
,
5996
(
2005
).
4.
S.
Iimura
,
S.
Matsuishi
,
H.
Sato
,
Y.
Muraba
,
S. W.
Kim
,
J. E.
Kim
,
M.
Takata
, and
H.
Hosono
,
Nat. Commun.
3
,
943
(
2012
).
5.
Y.
Kobayashi
,
O. J.
Hernandez
,
T.
Sakaguchi
,
T.
Yajima
,
T.
Roisnel
,
Y.
Tsujimoto
,
M.
Morita
,
Y.
Noda
,
Y.
Mogami
,
A.
Kitada
,
M.
Ohkura
,
S.
Hosokawa
,
Z.
Li
,
K.
Hayashi
,
Y.
Kusano
,
J.
eun Kim
,
N.
Tsuji
,
A.
Fujiwara
,
Y.
Matsushita
,
K.
Yoshimura
,
K.
Takegoshi
,
M.
Inoue
,
M.
Takano
, and
H.
Kageyama
,
Nat. Mater.
11
,
507
(
2012
).
6.
T.
Yajima
,
A.
Kitada
,
Y.
Kobayashi
,
T.
Sakaguchi
,
G.
Bouilly
,
S.
Kasahara
,
T.
Terashima
,
M.
Takano
, and
H.
Kageyama
,
J. Am. Chem. Soc.
134
,
8782
(
2012
).
7.
C.
Tassel
,
Y.
Goto
,
Y.
Kuno
,
J.
Hester
,
M.
Green
,
Y.
Kobayashi
, and
H.
Kageyama
,
Angew. Chem., Int. Ed.
53
,
10377
(
2014
).
8.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
9.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
10.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
11.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
12.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
13.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
14.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
15.
R. F. W.
Bader
,
Acc. Chem. Res.
18
,
9
(
1985
).
16.
Y.
Uratani
,
T.
Shishidou
,
F.
Ishii
, and
T.
Oguchi
,
Jpn. J. Appl. Phys.
44
,
7130
(
2005
).
17.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornell University Press
,
New York
,
1960
), p.
514
.
18.
W.
Zhong
,
R. D.
King-Smith
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
72
,
3618
(
1994
).
19.
U.
Müller
,
Inorganic Structural Chemistry
(
John Wiley & Sons, Ltd
,
New York
,
2006
) p.
203
.
20.
S.
Piskunov
,
E.
Heifets
,
R. I.
Eglitis
, and
G.
Borstel
,
Comput. Mater. Sci.
29
,
165
(
2004
).

Supplementary Material

You do not currently have access to this content.