Tunable optical elements are mostly realized by microelectromechanical systems, which require expensive and complex lithography during processing. We demonstrate an alternative device based on an electrically tunable microcavity employing a dielectric soft elastomer actuator. The cavity resonance is varied by changing the physical cavity thickness due to electrostriction of the soft elastomer. We realize a tunable metal-elastomer-distributed Bragg reflector multi-half wavelength microcavity with a cavity layer thickness around 12 μm and quality factors up to 700. Applying a voltage up to 60 V between bottom ITO and top metal electrode tunes the wavelength of the cavity modes up to nm, which relates to a cavity thickness change of about 200 nm. This concept allows the implementation of tunable optical elements like tunable filters or resonators with low cost and simple processing.
Skip Nav Destination
Article navigation
24 October 2016
Research Article|
October 26 2016
Elastomer based electrically tunable, optical microcavities
Irma Slowik;
Irma Slowik
1Dresden Integrated Center for Applied Physics and Photonic Materials,
Technische Universität Dresden
, George-Bähr-Strasse 1, D-01069 Dresden, Germany
2Center for Advancing Electronics (cfaed),
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Nils M. Kronenberg;
Nils M. Kronenberg
3SUPA, School of Physics and Astronomy,
University of St Andrews
, North Haugh, St Andrews KY16 9SS, Scotland
Search for other works by this author on:
Markus Franke;
Markus Franke
2Center for Advancing Electronics (cfaed),
Technische Universität Dresden
, D-01062 Dresden, Germany
4Institut für Halbleiter- und Mikrosystemtechnik, Polymere Mikrosysteme,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Axel Fischer;
Axel Fischer
1Dresden Integrated Center for Applied Physics and Photonic Materials,
Technische Universität Dresden
, George-Bähr-Strasse 1, D-01069 Dresden, Germany
Search for other works by this author on:
Andreas Richter;
Andreas Richter
2Center for Advancing Electronics (cfaed),
Technische Universität Dresden
, D-01062 Dresden, Germany
4Institut für Halbleiter- und Mikrosystemtechnik, Polymere Mikrosysteme,
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Malte C. Gather;
Malte C. Gather
3SUPA, School of Physics and Astronomy,
University of St Andrews
, North Haugh, St Andrews KY16 9SS, Scotland
Search for other works by this author on:
Karl Leo
Karl Leo
1Dresden Integrated Center for Applied Physics and Photonic Materials,
Technische Universität Dresden
, George-Bähr-Strasse 1, D-01069 Dresden, Germany
2Center for Advancing Electronics (cfaed),
Technische Universität Dresden
, D-01062 Dresden, Germany
Search for other works by this author on:
Appl. Phys. Lett. 109, 171104 (2016)
Article history
Received:
May 11 2016
Accepted:
October 16 2016
Citation
Irma Slowik, Nils M. Kronenberg, Markus Franke, Axel Fischer, Andreas Richter, Malte C. Gather, Karl Leo; Elastomer based electrically tunable, optical microcavities. Appl. Phys. Lett. 24 October 2016; 109 (17): 171104. https://doi.org/10.1063/1.4966549
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Sputter epitaxy of ScAlN films on GaN high electron mobility transistor structures
Tomoya Okuda, Shunsuke Ota, et al.
Special issue APL organic and hybrid photodetectors
Karl Leo, Canek Fuentes-Hernandez, et al.
Related Content
Fabrication of a microcavity structure with a polyimide thin film prepared by vacuum deposition polymerization
J. Vac. Sci. Technol. B (July 1999)
Tunable open-access microcavities for on-chip cavity quantum electrodynamics
Appl. Phys. Lett. (January 2016)
Net gain in small mode volume organic microcavities
Appl. Phys. Lett. (January 2016)
Photonic confinement in laterally structured metal-organic microcavities
Appl. Phys. Lett. (August 2014)
Optical properties of InGaN quantum dots in monolithic pillar microcavities
Appl. Phys. Lett. (June 2010)