Tunable optical elements are mostly realized by microelectromechanical systems, which require expensive and complex lithography during processing. We demonstrate an alternative device based on an electrically tunable microcavity employing a dielectric soft elastomer actuator. The cavity resonance is varied by changing the physical cavity thickness due to electrostriction of the soft elastomer. We realize a tunable metal-elastomer-distributed Bragg reflector multi-half wavelength microcavity with a cavity layer thickness around 12 μm and quality factors up to 700. Applying a voltage up to 60 V between bottom ITO and top metal electrode tunes the wavelength of the cavity modes up to Δλ=14 nm, which relates to a cavity thickness change of about 200 nm. This concept allows the implementation of tunable optical elements like tunable filters or resonators with low cost and simple processing.

1.
S.
Forget
and
S.
Chenais
, “
Organic solid-state lasers
,”
Springer Series in Optical Science
Vol.
175
(
2013
), p.
165
.
2.
C.
Vannahme
,
S.
Klinkhammer
,
A.
Kolew
,
P. J.
Jakobs
,
M.
Guttmann
,
S.
Dehm
,
U.
Lemmer
, and
T.
Mappes
, “
Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate
,”
Microelectron. Eng.
87
,
693
695
(
2010
).
3.
M.
Pruessner
,
T.
Stievater
, and
W.
Rabinovich
, “
Reconfigurable filters using mems resonators and integrated optical microcavities
,” in
Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems
(
2008
), pp.
766
769
.
4.
W.
Chang
,
A.
Wang
,
A.
Murarka
,
G. M.
Akselrod
,
C.
Packard
,
J. H.
Lang
, and
V.
Bulović
, “
Electrically tunable organic vertical-cavity-surface-emitting laser
,”
Appl. Phys. Lett.
105
,
073303
(
2014
).
5.
W. C.
Roentgen
, “
About the changes in shape and volume of dielectrics caused by electricity
,”
Annual Physics and Chemistry Series
Vol.
11
, Sec III, edited by
G.
Wiedemann
(
J. A. Barth Leipzig
,
Germany
,
1880
), p.
771
.
6.
P.
Brochu
and
Q.
Pei
, “
Advances in dielectric elastomers for actuators and artificial muscles
,”
Macromol. Rapid Commun.
31
,
10
36
(
2010
).
7.
R.
Heydt
,
R.
Kornbluh
,
J.
Eckerle
, and
R.
Pelrine
, “
Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers
,”
Proc. SPIE
6168
,
61681M
(
2006
).
8.
S.
Rosset
and
H. R.
Shea
, “
Flexible and stretchable electrodes for dielectric elastomer actuators
,”
Appl. Phys. A
110
,
281
307
(
2013
).
9.
R.
Pelrine
,
R. D.
Kornbluh
,
J.
Eckerle
,
P.
Jeuck
,
S.
Oh
,
Q.
Pei
, and
S.
Stanford
, “
Dielectric elastomers: Generator mode fundamentals and applications
,”
Proc. SPIE
4329
,
148
156
(
2001
).
10.
M.
Beck
,
R.
Fiolka
, and
A.
Stemmer
, “
Variable phase retarder made of a dielectric elastomer actuator
,”
Opt. Lett.
34
,
803
805
(
2009
).
11.
M.
Aschwanden
,
D.
Niederer
, and
A.
Stemmer
, “
Tunable transmission gratings based on dielectric elastomer actuators
,”
Proc. SPIE
6927
,
69271R
1
(
2008
).
12.
P.
Liebetraut
,
S.
Petsch
,
W.
Mönch
, and
H.
Zappe
, “
Tunable solid-body elastomer lenses with electromagnetic actuation
,”
Appl. Opt.
50
,
3268
3274
(
2011
).
13.
D.
Liang
,
Z. F.
Lin
,
C. C.
Huang
, and
W. P.
Shih
, “
Tunable lens driven by dielectric elastomer actuator with ionic electrodes
,”
Micro Nano Lett.
9
,
869
873
(
2014
).
14.
R.-E.
Pelrine
,
R. D.
Kornbluh
, and
J. P.
Joseph
, “
Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation
,”
Sens. Actuators, A
64
,
77
85
(
1998
).
15.
R.
Pelrine
,
R.
Kornbluh
,
J.
Joseph
,
R.
Heydt
,
Q.
Pei
, and
S.
Chiba
, “
High-field deformation of elastomeric dielectrics for actuators
,”
Mater. Sci. Eng., C
11
,
89
100
(
2000
).
16.
A.
Pimpin
,
Y.
Suzuki
, and
N.
Kasagi
, “
Microelectrostrictive actuator with large out-of-plane deformation for flow-control
,”
Appl. J. Microelectromech. Syst.
16
,
753
764
(
2007
).
17.
M.
Gonzalez
,
F.
Axisa
,
M. V.
Bulcke
,
D.
Brosteaux
,
B.
Vandevelde
, and
J.
Vanfleteren
, “
Design of metal interconnects for stretchable electronic circuits
,”
Microelectron. Reliab.
48
(
6
),
825
832
(
2008
).
18.
F. M.
Weiss
,
T.
Töpper
,
B.
Osmani
,
C.
Winterhalter
, and
C.
Müller
, “
Impact of electrode preparation on the bending of asymmetric planar electro-active polymer microstructures
,”
Proc. SPIE
9056
,
905607
(
2014
).
19.
F.
Habrard
,
J.
Patscheider
, and
G.
Kovacs
, “
Super-compliant metallic electrodes for electroactive polymer actuators
,”
Proc. SPIE
8340
,
834013
(
2012
).
20.
D.
Bodas
and
C.
Khan-Malek
, “
Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation
,”
Sens. Actuators, B
123
,
368
373
(
2007
).
21.
X.
Zhao
and
Q.
Wang
, “
Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application
,”
Appl. Phys. Rev.
1
,
021304
(
2014
).
22.
A.
Thran
,
T.
Strunskus
,
V.
Zaporojtchenko
, and
F.
Faupel
, “
Evidence of noble metal diffusion in polymers at room temperature and its retardation by a chromium barrier
,”
Appl. Phys. Lett.
81
,
244
(
2002
).
23.
M. J.
Owen
and
P. J.
Smith
, “
Plasma treatment of polydimethylsiloxane
,”
J. Adhes. Sci. Technol.
8
,
1063
1075
(
1994
).
You do not currently have access to this content.