Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.

1.
A. H.
MacDonald
and
M.
Tsoi
,
Philos. Trans. R. Soc. A
369
,
3098
(
2011
).
2.
E. V.
Gomonay
and
V. M.
Loktev
,
Low Temp. Phys.
40
,
17
(
2014
).
3.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
,
Nat. Nanotechnol.
11
,
231
(
2016
).
4.
S.-H.
Yang
,
K.-S.
Ryu
, and
S.
Parkin
,
Nat. Nanotechnol.
10
,
221
(
2015
).
5.
V. M. T. S.
Barthem
,
C. V.
Colin
,
R.
Haettel
,
D.
Dufeu
, and
D.
Givord
,
J. Magn. Magn. Mater.
406
,
289
(
2016
).
6.
O.
Gomonay
,
T.
Jungwirth
, and
J.
Sinova
,
Phys. Rev. Lett.
117
,
017202
(
2016
).
7.
T.
Shiino
,
S.-H.
Oh
,
P. M.
Haney
,
S.-W.
Lee
,
G.
Go
,
B.-G.
Park
, and
K.-J.
Lee
,
Phys. Rev. Lett.
117
,
087203
(
2016
).
8.
S. K.
Kim
,
O.
Tchernyshyov
, and
Y.
Tserkovnyak
,
Phys. Rev. B
92
,
020402
(
2015
).
9.
S.
Selzer
,
U.
Atxitia
,
U.
Ritzmann
,
D.
Hinzke
, and
U.
Nowak
,
Phys. Rev. Lett.
117
,
107201
(
2016
).
10.
E. G.
Tveten
,
A.
Qaiumzadeh
, and
A.
Brataas
,
Phys. Rev. Lett.
112
,
147204
(
2014
).
11.
F. D. M.
Haldane
,
Phys. Rev. Lett.
50
,
1153
(
1983
).
12.
A.
Kosevich
,
B.
Ivanov
, and
A.
Kovalev
,
Phys. Rep.
194
,
117
(
1990
).
13.
B. A.
Ivanov
and
A. K.
Kolezhuk
,
Low Temp. Phys.
21
,
275
(
1995
).
14.
H. V.
Gomonay
and
V. M.
Loktev
,
Phys. Rev. B
81
,
144427
(
2010
).
15.
E. G.
Tveten
,
A.
Qaiumzadeh
,
O.
Tretiakov
, and
A.
Brataas
,
Phys. Rev. Lett.
110
,
127208
(
2013
).
16.
H. C.
Wu
,
Z. M.
Liao
,
R. G. S.
Sofin
,
G.
Feng
,
X. M.
Ma
,
A. B.
Shick
,
O. N.
Mryasov
, and
I. V.
Shvets
,
Adv. Mater.
24
,
6374
(
2012
).
17.
A. B.
Shick
,
S.
Khmelevskyi
,
O. N.
Mryasov
,
J.
Wunderlich
, and
T.
Jungwirth
,
Phys. Rev. B
81
,
212409
(
2010
).
18.
M. T.
Hutchings
and
E. J.
Samuelsen
,
Phys. Rev. B
6
,
3447
(
1972
).
19.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
,
S.
Mährlein
,
T.
Dekorsy
,
M.
Wolf
,
M.
Fiebig
,
A.
Leitenstorfer
, and
R.
Huber
,
Nat. Photonics
5
,
31
34
(
2011
).
20.
J.-S.
Kim
,
M.-A.
Mawass
,
A.
Bisig
,
B.
Krüger
,
R. M.
Reeve
,
T.
Schulz
,
F.
Büttner
,
J.
Yoon
,
C.-Y.
You
,
M.
Weigand
,
H.
Stoll
,
G.
Schütz
,
H. J. M.
Swagten
,
B.
Koopmans
,
S.
Eisebitt
, and
M.
Kläui
,
Nat. Commun.
5
,
3429
(
2014
).
You do not currently have access to this content.